Skip to main content

Content-Consistent Matching for Domain Adaptive Semantic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12359))

Included in the following conference series:

Abstract

This paper considers the adaptation of semantic segmentation from the synthetic source domain to the real target domain. Different from most previous explorations that often aim at developing adversarial-based domain alignment solutions, we tackle this challenging task from a new perspective, i.e., content-consistent matching (CCM). The target of CCM is to acquire those synthetic images that share similar distribution with the real ones in the target domain, so that the domain gap can be naturally alleviated by employing the content-consistent synthetic images for training. To be specific, we facilitate the CCM from two aspects, i.e., semantic layout matching and pixel-wise similarity matching. First, we use all the synthetic images from the source domain to train an initial segmentation model, which is then employed to produce coarse pixel-level labels for the unlabeled images in the target domain. With the coarse/accurate label maps for real/synthetic images, we construct their semantic layout matrixes from both horizontal and vertical directions and perform the matrixes matching to find out the synthetic images with similar semantic layout to real images. Second, we choose those predicted labels with high confidence to generate feature embeddings for all classes in the target domain, and further perform the pixel-wise matching on the mined layout-consistent synthetic images to harvest the appearance-consistent pixels. With the proposed CCM, only those content-consistent synthetic images are taken into account for learning the segmentation model, which can effectively alleviate the domain bias caused by those content-irrelevant synthetic images. Extensive experiments are conducted on two popular domain adaptation tasks, i.e., GTA5\(\xrightarrow {}\)Cityscapes and SYNTHIA\(\xrightarrow {}\)Cityscapes. Our CCM yields consistent improvements over the baselines and performs favorably against previous state-of-the-arts.

G. Li and G. Kang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/RogerZhangzz/CAG_UDA/issues/6.

References

  1. Chang, W.L., Wang, H.P., Peng, W.H., Chiu, W.C.: All about structure: adapting structural information across domains for boosting semantic segmentation. In: IEEE CVPR, June 2019

    Google Scholar 

  2. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: IEEE CVPR, June 2019

    Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  4. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous convolution for semantic image segmentation. CoRR abs/1706.05587 (2017). http://arxiv.org/abs/1706.05587

  5. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  6. Chen, M., Xue, H., Cai, D.: Domain adaptation for semantic segmentation with maximum squares loss. In: IEEE ICCV, October 2019

    Google Scholar 

  7. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: CrDoCo: pixel-level domain transfer with cross-domain consistency. In: IEEE CVPR, June 2019

    Google Scholar 

  8. Cheng, B., et al.: SPGNet: Semantic prediction guidance for scene parsing. In: IEEE ICCV, pp. 5218–5228 (2019)

    Google Scholar 

  9. Choi, J., Kim, T., Kim, C.: Self-ensembling with GAN-based data augmentation for domain adaptation in semantic segmentation. In: IEEE ICCV, October 2019

    Google Scholar 

  10. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE CVPR (2016)

    Google Scholar 

  11. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  12. Du, L., et al.: SSF-DAN: separated semantic feature based domain adaptation network for semantic segmentation. In: IEEE ICCV, October 2019

    Google Scholar 

  13. Feng, Q., Kang, G., Fan, H., Yang, Y.: Attract or distract: exploit the margin of open set. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7990–7999 (2019)

    Google Scholar 

  14. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML, ICML2015, pp. 1180–1189. JMLR.org (2015)

    Google Scholar 

  15. Gong, R., Li, W., Chen, Y., Gool, L.V.: DLOW: domain flow for adaptation and generalization. In: IEEE CVPR, June 2019

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  17. Hoffman, J., et al.: CyCADA: Cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 (2017)

  18. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  19. Huang, Z., et al.: CCNet: Criss-cross attention for semantic segmentation. TPAMI (2020)

    Google Scholar 

  20. Jiang, L., Meng, D., Zhao, Q., Shan, S., Hauptmann, A.G.: Self-paced curriculum learning. In: AAAI (2015)

    Google Scholar 

  21. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902 (2019)

    Google Scholar 

  22. Kang, G., Zheng, L., Yan, Y., Yang, Y.: Deep adversarial attention alignment for unsupervised domain adaptation: the benefit of target expectation maximization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 420–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_25

    Chapter  Google Scholar 

  23. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced Wasserstein discrepancy for unsupervised domain adaptation. In: IEEE CVPR, June 2019

    Google Scholar 

  24. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML, vol. 3, p. 2 (2013)

    Google Scholar 

  25. Li, Y., Wang, N., Shi, J., Hou, X., Liu, J.: Adaptive batch normalization for practical domain adaptation. Pattern Recognit. 80, 109–117 (2018). https://doi.org/10.1016/j.patcog.2018.03.005, https://doi.org/10.1016/j.patcog.2018.03.005

  26. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: IEEE CVPR, June 2019

    Google Scholar 

  27. Lian, Q., Lv, F., Duan, L., Gong, B.: Constructing self-motivated pyramid curriculums for cross-domain semantic segmentation: a non-adversarial approach. In: IEEE ICCV, October 2019

    Google Scholar 

  28. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: IEEE CVPR, July 2017

    Google Scholar 

  29. Liu, X., et al.: Feature-level Frankenstein: eliminating variations for discriminative recognition. In: IEEE CVPR, June 2019

    Google Scholar 

  30. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  31. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML, ICML2015, p. 97–105. JMLR.org (2015)

    Google Scholar 

  32. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)

  33. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: IEEE CVPR (2019)

    Google Scholar 

  34. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596 (2014)

  35. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  36. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: IEEE CVPR, June 2016

    Google Scholar 

  37. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: ICML, pp. 2988–2997. JMLR.org (2017)

    Google Scholar 

  38. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  39. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: IEEE CVPR (2018)

    Google Scholar 

  40. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: IEEE CVPR (2018)

    Google Scholar 

  41. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: IEEE CVPR, July 2017

    Google Scholar 

  42. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. CoRR abs/1412.3474 (2014). http://arxiv.org/abs/1412.3474

  43. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: IEEE CVPR (2019)

    Google Scholar 

  44. Wang, Z., et al.: Differential treatment for stuff and things: a simple unsupervised domain adaptation method for semantic segmentation. In: IEEE CVPR, pp. 12635–12644 (2020)

    Google Scholar 

  45. Wu, J., et al.: Sliced Wasserstein generative models. In: IEEE CVPR, June 2019

    Google Scholar 

  46. Wu, Z., et al.: DCAN: dual channel-wise alignment networks for unsupervised scene adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 535–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_32

    Chapter  Google Scholar 

  47. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: Dy, J., Krause, A. (eds.) ICML. Proceedings of Machine Learning Research, vol. 80, pp. 5423–5432. PMLR, Stockholmsmässan, Stockholm Sweden, 10–15 July 2018. http://proceedings.mlr.press/v80/xie18c.html

  48. Zhang, Q., Zhang, J., Liu, W., Tao, D.: Category anchor-guided unsupervised domain adaptation for semantic segmentation. In: NeuralPS, pp. 433–443 (2019)

    Google Scholar 

  49. Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: IEEE CVPR, June 2018

    Google Scholar 

  50. Zhang, Y., David, P., Foroosh, H., Gong, B.: A curriculum domain adaptation approach to the semantic segmentation of urban scenes. IEEE TPAMI, p. 1 (2019). https://doi.org/10.1109/TPAMI.2019.2903401

  51. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: IEEE ICCV, p. 6, October 2017

    Google Scholar 

  52. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE CVPR (2017)

    Google Scholar 

  53. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. arXiv preprint arXiv:2003.03773 (2020)

  54. Zheng, Z., Yang, Y.: Unsupervised scene adaptation with memory regularization in vivo. IJCAI (2020)

    Google Scholar 

  55. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE ICCV (2017)

    Google Scholar 

  56. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

  57. Zou, Y., Yu, Z., Liu, X., Kumar, B.V., Wang, J.: Confidence regularized self-training. In: IEEE ICCV, October 2019

    Google Scholar 

Download references

Acknowledgement

This work is in part supported by ARC DECRA DE190101315 and ARC DP200100938.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangrui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Kang, G., Liu, W., Wei, Y., Yang, Y. (2020). Content-Consistent Matching for Domain Adaptive Semantic Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58568-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58567-9

  • Online ISBN: 978-3-030-58568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics