Skip to main content

Learning to Transfer Learn: Reinforcement Learning-Based Selection for Adaptive Transfer Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

We propose a novel adaptive transfer learning framework, learning to transfer learn (L2TL), to improve performance on a target dataset by careful extraction of the related information from a source dataset. Our framework considers cooperative optimization of shared weights between models for source and target tasks, and adjusts the constituent loss weights adaptively. The adaptation of the weights is based on a reinforcement learning (RL) selection policy, guided with a performance metric on the target validation set. We demonstrate that L2TL outperforms fine-tuning baselines and other adaptive transfer learning methods on eight datasets. In the regimes of small-scale target datasets and significant label mismatch between source and target datasets, L2TL shows particularly large benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Function arguments are not often shown in the paper for notational convenience.

  2. 2.

    Batch approximations may be optimal for different batch sizes for source and target dataset and thus may employ different batch normalization parametrization.

  3. 3.

    In \(f(\cdot ;\mathbf {W})\) representation, \(\mathbf {W}\) denote the trainable parameters.

  4. 4.

    Source datasets are typically much larger and contain more classes, hence \(h_S\) may have higher number of parameters than \(h_T\).

  5. 5.

    Without loss of generality, we can optimize a single weight \({\alpha _s[i]}\) (setting \(\alpha _t[i]=1\)) as the optimization is scale invariant.

  6. 6.

    A search space with a higher optimization granularity is expected to improve the results, albeit accompanied by significantly increased computational complexity for meta learning of x-dependent \(\lambda (x, y; \mathbf {\Phi })\).

  7. 7.

    Our reproduced results are matched with  [19] on mean AUC. However, there are variances as we can see that for some classes, we achieve slightly worse than  [19]. This may because of the small number of validation examples (200) used.

References

  1. Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., et al.: Deep speech 2: end-to-end speech recognition in English and Mandarin. In: ICML (2016)

    Google Scholar 

  2. Arik, S.Ö., Chen, J., Peng, K., Ping, W., Zhou, Y.: Neural voice cloning with a few samples. In: NeurIPS (2018)

    Google Scholar 

  3. Berg, T., Liu, J., Woo Lee, S., Alexander, M.L., Jacobs, D.W., Belhumeur, P.N.: Birdsnap: Large-scale fine-grained visual categorization of birds. In: CVPR (2014)

    Google Scholar 

  4. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  5. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR (2014)

    Google Scholar 

  6. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

  7. Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large scale fine-grained categorization and domain-specific transfer learning. In: CVPR (2018)

    Google Scholar 

  8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arxiv:1810.04805 (2018)

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  10. Ge, W., Yu, Y.: Borrowing treasures from the wealthy: deep transfer learning through selective joint fine-tuning. In: CVPR (2017)

    Google Scholar 

  11. Ghorbani, A., Zou, J.: Data Shapley: equitable valuation of data for machine learning. In: ICML (2019)

    Google Scholar 

  12. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  13. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR (2012)

    Google Scholar 

  14. Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., Feris, R.S.: SpotTune: transfer learning through adaptive fine-tuning. In: CVPR (2019)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. Hestness, J., et al.: Deep learning scaling is predictable, empirically. arXiv:1712.00409 (2017)

  17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  18. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  19. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: AAAI (2019)

    Google Scholar 

  20. Jenni, S., Favaro, P.: Deep bilevel learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 632–648. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_38

    Chapter  Google Scholar 

  21. Jiang, L., Zhou, Z., Leung, T., Li, L., Fei-Fei, L.: MentorNet: regularizing very deep neural networks on corrupted labels. In: ICML (2018)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  23. Krause, J., Deng, J., Stark, M., Fei-Fei, L.: Collecting a large-scale dataset of fine-grained cars. In: The Second Workshop on Fine-Grained Visual Categorization (2013)

    Google Scholar 

  24. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NeurIPS (2010)

    Google Scholar 

  25. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  26. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. arXiv:1901.08746 (2019)

  27. Li, X., Grandvalet, Y., Davoine, F.: Explicit inductive bias for transfer learning with convolutional networks. In: ICML (2018)

    Google Scholar 

  28. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  29. Liu, H., Long, M., Wang, J., Jordan, M.I.: Towards understanding the transferability of deep representations (2019)

    Google Scholar 

  30. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  31. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12

    Chapter  Google Scholar 

  32. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv:1306.5151 (2013)

  33. Moon, S., Kim, S., Wang, H.: Multimodal transfer deep learning for audio visual recognition. arXiv:1412.3121 (2014)

  34. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  35. Ngiam, J., Peng, D., Vasudevan, V., Kornblith, S., Le, Q.V., Pang, R.: Domain adaptive transfer learning with specialist models. arXiv preprint arXiv:1811.07056 (2018)

  36. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., et al.: WaveNet: a generative model for raw audio. arXiv:1609.03499 (2016)

  37. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: CVPR (2012)

    Google Scholar 

  38. Peng, Y., He, X., Zhao, J.: Object-part attention model for fine-grained image classification. TIP 27, 1487–1500 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: ICML (2018)

    Google Scholar 

  40. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  41. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPR (2014)

    Google Scholar 

  42. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: ICML (2019)

    Google Scholar 

  43. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  44. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: ICML (2016)

    Google Scholar 

  45. Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. Mach. Learn. 28, 105–130 (1997). https://doi.org/10.1023/A:1007383707642

    Article  Google Scholar 

  46. Shu, J., et al.: Meta-weight-net: Learning an explicit mapping for sample weighting. In: NeurIPS (2019)

    Google Scholar 

  47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  48. Wang, D., Shen, Z., Shao, J., Zhang, W., Xue, X., Zhang, Z.: Multiple granularity descriptors for fine-grained categorization. In: ICCV (2015)

    Google Scholar 

  49. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992). https://doi.org/10.1007/BF00992696

    Article  MATH  Google Scholar 

  50. Wu, Z., Xiong, C., Ma, C.Y., Socher, R., Davis, L.S.: AdaFrame: adaptive frame selection for fast video recognition. In: CVPR (2019)

    Google Scholar 

  51. Zhu, L., Yang, Y.: Label independent memory for semi-supervised few-shot video classification. TPAMI (2020). https://doi.org/10.1109/TPAMI.2020.3007511

    Article  Google Scholar 

  52. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)

    Google Scholar 

  53. Zoph, B., Yuret, D., May, J., Knight, K.: Transfer learning for low-resource neural machine translation. In: ACL (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linchao Zhu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 157 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, L., Arık, S.Ö., Yang, Y., Pfister, T. (2020). Learning to Transfer Learn: Reinforcement Learning-Based Selection for Adaptive Transfer Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics