Skip to main content

PatchPerPix for Instance Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

We present a novel method for proposal free instance segmentation that can handle sophisticated object shapes which span large parts of an image and form dense object clusters with crossovers. Our method is based on predicting dense local shape descriptors, which we assemble to form instances. All instances are assembled simultaneously in one go. To our knowledge, our method is the first non-iterative method that yields instances that are composed of learnt shape patches. We evaluate our method on a diverse range of data domains, where it defines the new state of the art on four benchmarks, namely the ISBI 2012 EM segmentation benchmark, the BBBC010 C. elegans dataset, and 2d as well as 3d fluorescence microscopy data of cell nuclei. We show furthermore that our method also applies to 3d light microscopy data of Drosophila neurons, which exhibit extreme cases of complex shape clusters.

L. Mais and P. Hirsch—Contributed equally, listed in random order.

Code available: https://github.com/Kainmueller-Lab/PatchPerPix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BBBC010v1: C.elegans infection live/dead image set version 1 provided by Fred Ausubel.

  2. 2.

    https://www.kaggle.com/c/data-science-bowl-2018.

  3. 3.

    http://brainiac2.mit.edu/isbi_challenge/leaders-board-new.

  4. 4.

    BBBC038v1: available from the Broad Bioimage Benchmark Collection [21].

References

  1. Arganda-Carreras, I., et al.: Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanat. 9, 142 (2015)

    Article  Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. CoRR abs/1611.08303 (2016)

    Google Scholar 

  4. Chen, L., Strauch, M., Merhof, D.: Instance segmentation of biomedical images with an object-aware embedding learned with local constraints. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 451–459. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_50

    Chapter  Google Scholar 

  5. Chen, X., Girshick, R.B., He, K., Dollár, P.: TensorMask: a foundation for dense object segmentation. CoRR abs/1903.12174 (2019). http://arxiv.org/abs/1903.12174

  6. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. CoRR abs/1603.08678 (2016), http://arxiv.org/abs/1603.08678

  7. De Brabandere, B., Neven, D., Van Gool, L.: Semantic instance segmentation with a discriminative loss function. arXiv preprint arXiv:1708.02551 (2017)

  8. Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. (2018). https://doi.org/10.1109/TPAMI.2018.2835450

  9. Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 642–651 (2019)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2014, pp. 580–587. IEEE Computer Society, Washington, DC (2014). https://doi.org/10.1109/CVPR.2014.81

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN (2017). http://arxiv.org/abs/1703.06870. Comment: open source; appendix on more results

  12. Hirsch, P., Kainmueller, D.: An auxiliary task for learning nuclei segmentation in 3d microscopy images. In: Medical Imaging with Deep Learning (MIDL), July 2020

    Google Scholar 

  13. Januszewski, M., Maitin-Shepard, J., Li, P., Kornfeld, J., Denk, W., Jain, V.: Flood-filling networks. CoRR abs/1611.00421 (2016). http://arxiv.org/abs/1611.00421

  14. Jenett, A., et al.: A gal4-driver line resource for drosophila neurobiology. Cell reports 2(4), 991–1001 (2012). https://doi.org/10.1016/j.celrep.2012.09.011, https://www.ncbi.nlm.nih.gov/pubmed/23063364, 23063364[pmid]

  15. Jetley, S., Sapienza, M., Golodetz, S., Torr, P.H.S.: Straight to shapes: real-time detection of encoded shapes. CoRR abs/1611.07932 (2016), http://arxiv.org/abs/1611.07932

  16. Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1751–1759 (2015)

    Google Scholar 

  17. Kulikov, V., Lempitsky, V.: Instance segmentation of biological images using harmonic embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  18. Lee, K., Lu, R., Luther, K., Seung, H.S.: Learning dense voxel embeddings for 3D neuron reconstruction (2019)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, Y., et al.: Affinity derivation and graph merge for instance segmentation. CoRR abs/1811.10870 (2018). http://arxiv.org/abs/1811.10870

  21. Ljosa, V., Sokolnicki, K.L., Carpenter, A.E.: Annotated high-throughput microscopy image sets for validation. Nat. Methods 9, 637 EP (2012). https://doi.org/10.1038/nmeth.2083

  22. Long, F., Peng, H., Liu, X., Kim, S.K., Myers, E.: A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat. Methods 6(9), 667–672 (2009). https://doi.org/10.1038/nmeth.1366

  23. Maitin-Shepard, J.B., Jain, V., Januszewski, M., Li, P., Abbeel, P.: Combinatorial energy learning for image segmentation. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 1966–1974. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6595-combinatorial-energy-learning-for-image-segmentation.pdf

  24. Nern, A., Pfeiffer, B.D., Rubin, G.M.: Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl. Acad. Sci. 112(22), E2967–E2976 (2015). https://doi.org/10.1073/pnas.1506763112, https://www.pnas.org/content/112/22/E2967

  25. Novotny, D., Albanie, S., Larlus, D., Vedaldi, A.: Semi-convolutional operators for instance segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_6

    Chapter  Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. CoRR abs/1806.03535 (2018)

    Google Scholar 

  28. Wählby, C., et al.: An image analysis toolbox for high-throughput c. elegans assays. Nat. Methods 9(7), 714–716 (2012). https://doi.org/10.1038/nmeth.1984

  29. Weigert, M., Schmidt, U., Haase, R., Sugawara, K., Myers, G.: Star-convex polyhedra for 3D object detection and segmentation in microscopy. arXiv:1908.03636 (2019)

  30. Wolf, S., et al.: The mutex watershed: efficient, parameter-free image partitioning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 571–587. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_34

    Chapter  Google Scholar 

  31. Wolf, S., Schott, L., Kothe, U., Hamprecht, F.: Learned watershed: end-to-end learning of seeded segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2011–2019 (2017)

    Google Scholar 

  32. Yurchenko, V., Lempitsky, V.S.: Parsing images of overlapping organisms with deep singling-out networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 4752–4760 (2017). https://doi.org/10.1109/CVPR.2017.505

Download references

Acknowledgments

We wish to thank Constantin Pape for his invaluable help in reproducing the training- and prediction setup from [30], Carolina Waehlby for help with the BBBC010 data, Stephan Saalfeld and Carsten Rother for inspiring discussions, the FlyLight Project Team (https://www.janelia.org/project-team/flylight) at Janelia Research Campus for providing unpublished data, and Claire Managan and Ramya Kappagantula (Janelia Project Technical Resources) for their conscientious manual neuron segmentations. P.H., L.M. and D.K. were funded by the Berlin Institute of Health and the Max Delbrueck Center for Molecular Medicine. P.H. was funded by HFSP grant RGP0021/2018-102. P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program. VVD Viewer (https://github.com/takashi310/VVD_Viewer) is an open-source software funded by NIH grant R01-GM098151-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Kainmueller .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2014 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mais, L., Hirsch, P., Kainmueller, D. (2020). PatchPerPix for Instance Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12370. Springer, Cham. https://doi.org/10.1007/978-3-030-58595-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58595-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58594-5

  • Online ISBN: 978-3-030-58595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics