Skip to main content

CFD Prediction of Retractable Landing Gear Aerodynamics

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

CFD analysis is carried out to evaluate the mean aerodynamic loads on the retractable main landing-gear of a regional transport commercial aircraft. The mean flow around the landing-gear system including doors is simulated by using the Reynolds-averaged Navier-Stokes modelling approach, the governing equations being solved with a finite volume-based numerical technique. The computational grid is automatically adapted to the time-changing geometry by means of a dynamic meshing technique, while following the deployment of the landing-gear system. The present computational modelling approach is verified to have good practical potential by making a comparison with reference experimental data provided by the Leonardo Aircraft Company aerodynamicists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, F.T., Tinoco, E.N., Yu, N.J.: Thirty years of development and application of CFD at Boeing Commercial Airplanes. Comput. Fluids 34, 1115–1151 (2005)

    Article  Google Scholar 

  2. Spalart, P.R., Venkatakrishnan, V.: On the role and challenges of CFD in the aerospace industry. Aeronaut. J. 120(1223), 209–232 (2016)

    Article  Google Scholar 

  3. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92–0439 (1992)

    Google Scholar 

  4. Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)

    Article  Google Scholar 

  5. Langtry, R.B., Spalart, P.R.: Detached eddy simulation of a nose landing-gear cavity. Solid Mech. Appl. 14, 357–366 (2009)

    Google Scholar 

  6. De Stefano, G., Vasilyev, O.V., Brown-Dymkoski, E.: Wavelet-based adaptive unsteady Reynolds-averaged turbulence modelling of external flows. J. Fluid Mech. 837, 765–787 (2018)

    Article  MathSciNet  Google Scholar 

  7. Ge, X., Vasilyev, O.V., De Stefano, G., Hussaini, M.Y.: Wavelet-based adaptive unsteady Reynolds-averaged Navier-Stokes simulations of wall-bounded compressible turbulent flows. AIAA J. 58(4), 1529–1549 (2020)

    Article  Google Scholar 

  8. De Stefano, G., Vasilyev, O.V.: Wavelet-based adaptive simulations of three-dimensional flow past a square cylinder. J. Fluid Mech. 748, 433–456 (2014)

    Article  MathSciNet  Google Scholar 

  9. Imamura, T., Hirai, T., Amemiya, K., Yokokawa, Y., Enomoto, S., Yamamoto, K.: Aerodynamic and aeroacoustic simulations of a two-wheel landing-gear. Procedia Eng. 6, 293–302 (2010)

    Article  Google Scholar 

  10. Spalart, P.R., Mejia, K.M.: Analysis of experimental and numerical studies of the rudimentary landing gear. AIAA Paper 2011-355 (2011)

    Google Scholar 

  11. Escobar, J.A., Suarez, C.A., Silva, C., López, O.D., Velandia, J.S., Lara, C.A.: Detached-eddy simulation of a wide-body commercial aircraft in high-lift configuration. J. Aircr. 52(4), 1112–1121 (2015)

    Article  Google Scholar 

  12. Reina, G.P., De Stefano, G.: Computational evaluation of wind loads on sun-tracking ground-mounted photovoltaic panel arrays. J. Wind Eng. Ind. Aerodyn. 170, 283–293 (2017)

    Article  Google Scholar 

  13. Rapagnani, D., Buompane, R., Di Leva, A., et al.: A supersonic jet target for the cross section measurement of the 12C(\(\alpha \), \(\gamma \))16O reaction with the recoil mass separator ERNA. Nucl. Instrum. Methods Phys. Res. B 407, 217–221 (2017)

    Article  Google Scholar 

  14. Benaouali, A., Kachel, S.: Multidisciplinary design optimization of aircraft wing using commercial software integration. Aerosp. Sci. Technol. 92, 766–776 (2019)

    Article  Google Scholar 

  15. Hedges, L.S., Travin, A.K., Spalart, P.R.: Detached-eddy simulations over a simplified landing gear. J. Fluids Eng. 124, 413–420 (2002)

    Article  Google Scholar 

  16. Xiao, Z., Liu, J., Luo, K., Huang, J., Fu, S.: Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches. AIAA J. 51(1), 107–125 (2013)

    Article  Google Scholar 

  17. Rhee, S.H., Koutsavdis, E.K.: Unsteady marine propulsor blade flow - A CFD validation with unstructured dynamic meshing. AIAA Paper 2003–3887 (2003)

    Google Scholar 

  18. De Stefano, G., Nejadmalayeri, A., Vasilyev, O.V.: Wall-resolved wavelet-based adaptive large-eddy simulation of bluff-body flows with variable thresholding. J. Fluid Mech. 788, 303–336 (2016)

    Article  MathSciNet  Google Scholar 

  19. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries Inc., La Canada (2006)

    Google Scholar 

  20. Pavlenko, O.V., Chuban, A.V.: Numerical investigation of the hinge moments of the nose landing gear doors in a passenger aircraft in the process of opening. TsAGI Sci. J. 47(5), 513–523 (2016)

    Article  Google Scholar 

  21. Pavlenko, O.V., Chuban, A.V.: Determining hinge moments of the main landing gear fuselage door by means of numerical flow simulation. TsAGI Sci. J. 49(7), 781–792 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Regione Campania under the research project SCAVIR (POR Campania FESR 2014/2020), presented by the Campania Aerospace Technological District (DAC). This support is gratefully acknowledged. The authors would like to thank the Leonardo Aircraft Company for providing the landing gear data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano De Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Stefano, G., Natale, N., Piccolo, A., Reina, G.P. (2020). CFD Prediction of Retractable Landing Gear Aerodynamics. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics