Skip to main content

Multifractional Gaussian Process Based on Self-similarity Modelling for MS Subgroups’ Clustering with Fuzzy C-Means

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12250))

Included in the following conference series:

  • 1325 Accesses

Abstract

Multifractal analysis is a beneficial way to systematically characterize the heterogeneous nature of both theoretical and experimental patterns of fractal. Multifractal analysis tackles the singularity structure of functions or signals locally and globally. While Hölder exponent at each point provides the local information, the global information is attained by characterization of the statistical or geometrical distribution of Hölder exponents occurring, referred to as multifractal spectrum. This analysis is time-saving while dealing with irregular signals; hence, such analysis is used extensively. Multiple Sclerosis (MS), is an auto-immune disease that is chronic and characterized by the damage to the Central Nervous System (CNS), is a neurological disorder exhibiting dissimilar and irregular attributes varying among patients. In our study, the MS dataset consists of the Expanded Disability Status Scale (EDSS) scores and Magnetic Resonance Imaging (MRI) (taken in different years) of patients diagnosed with MS subgroups (relapsing remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS)) while healthy individuals constitute the control group. This study aims to identify similar attributes in homogeneous MS clusters and dissimilar attributes in different MS subgroup clusters. Thus, it has been aimed to demonstrate the applicability and accuracy of the proposed method based on such cluster formation. Within this framework, the approach we propose follows these steps for the classification of the MS dataset. Firstly, Multifractal denoising with Gaussian process is employed for identifying the critical and significant self-similar attributes through the removal of MS dataset noise, by which, mFd_MS dataset is generated. As another step, Fuzzy C-means algorithm is applied to the MS dataset for the classification purposes of both datasets. Based on the experimental results derived within the scheme of the applicable and efficient proposed method, it is shown that mFd_MS dataset yielded a higher accuracy rate since the critical and significant self-similar attributes were identified in the process. This study can provide future direction in different fields such as medicine, natural sciences and engineering as a result of the model proposed and the application of alternative mathematical models. As obtained based on the model, the experimental results of the study confirm the efficiency, reliability and applicability of the proposed method. Thus, it is hoped that the derived results based on the thorough analyses and algorithmic applications will be assisting in terms of guidance for the related studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  Google Scholar 

  2. Setty, V.A., Sharma, A.S.: Characterizing detrended fluctuation analysis of multifractional Brownian motion. Physica A: Stat. Mech. Appl. 419, 698–706 (2015)

    Article  Google Scholar 

  3. Dumitru, B., Kai, D., Enrico, S.: Fractional Calculus: Models and Numerical Methods, vol. 3. World Scientific (2012)

    Google Scholar 

  4. Karaca, Y.: Wavelet-based multifractal spectrum estimation in hepatitis virus classification models by using artificial neural network approach. In: Shapshak, P., et al. (eds.) Global Virology III: Virology in the 21st Century, pp. 73–96. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29022-1_4

    Chapter  Google Scholar 

  5. Karaca, Y., Zhang, Y.D., Muhammad, K.: Characterizing complexity and self-similarity based on fractal and entropy analyses for stock market forecast modelling. Expert Syst. Appl. 144, 113098 (2020)

    Article  Google Scholar 

  6. Karaca, Y., Cattani, C.: Computational Methods for Data Analysis. Walter de Gruyter GmbH, Berlin (2018). (978–3110496352)

    Google Scholar 

  7. Karaca, Y., Cattani, C., Moonis, M., Bayrak, Ş.: Stroke subtype clustering by multifractal Bayesian denoising with Fuzzy C means and K-Means algorithms. Complexity (2018)

    Google Scholar 

  8. Karaca, Y., Cattani, C.: A comparison of two Hölder regularity functions to forecast stock indices by ANN algorithms. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 270–284. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_23

    Chapter  Google Scholar 

  9. Machado, J.A.T., Baleanu, D., Luo, A.C.: Nonlinear and Complex Dynamics: Applications in Physical, Biological, and Financial Systems. Springer, Berlin (2011). https://doi.org/10.1007/978-1-4614-0231-2

    Book  MATH  Google Scholar 

  10. Zhang, Y., et al.: Fractal dimension estimation for developing pathological brain detection system based on Minkowski-Bouligand method. IEEE Access 4, 5937–5947 (2016)

    Article  Google Scholar 

  11. Ayache, A., Véhel, J.L.: Generalized multifractional Brownian motion: definition and preliminary results. In: Dekking, M., Véhel, J.L., Lutton, E., Tricot, C. (eds.) Fractals, pp. 17–32. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0873-3_2

    Chapter  Google Scholar 

  12. Ayache, A., Cohen, S., Véhel, J.L.: The covariance structure of multifractional Brownian motion, with application to long range dependence. In: 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings (Cat. No. 00CH37100), vol. 6, pp. 3810–3813. IEEE (2000)

    Google Scholar 

  13. Ayache, A., Véhel, J.L.: On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stoch. Processes Appl. 111(1), 119–156 (2004)

    Article  Google Scholar 

  14. Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.: On the fractional signals and systems. Sig. Process. 91(3), 350–371 (2011)

    Article  Google Scholar 

  15. Lahmiri, S.: Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients. Physica A: Stat. Mech. Appl. 490, 378–385 (2018)

    Article  Google Scholar 

  16. El Hassouni, M., Jennane, R., Tafraouti, A.: Evaluation of fractional Brownian motion synthesis methods using the SVM classifier. Biomed. Sig. Process. Control 49, 48–56 (2019)

    Article  Google Scholar 

  17. David, S.A., Machado, J.A.T., In\(\acute{a}\)cio Jr., C.M.C., Valentim Jr., C.A.: A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst, Commun. Nonlinear Sci. Numer. Simul. 84, 105170 (2020)

    Google Scholar 

  18. Rohini, P., Sundar, S., Ramakrishnan, S.: Differentiation of early mild cognitive impairment in brainstem MR images using multifractal detrended moving average singularity spectral features. Biomed. Sig. Process. Control 57, 101780 (2020)

    Article  Google Scholar 

  19. Karaca, Y., Cattani, C., Karabudak, R.: ANN classification of MS subgroups with diffusion limited aggregation. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 121–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_9

    Chapter  Google Scholar 

  20. Compston, A., Coles, A.: Multiple sclerosis. The Lancet 372, 1502–1517 (2008)

    Article  Google Scholar 

  21. Tallantyre, E.C., et al.: Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology 76(6), 534–539 (2011)

    Article  Google Scholar 

  22. Goodwin, S.J.: Multiple sclerosis: integration of modeling with biology, clinical and imaging measures to provide better monitoring of disease progression and prediction of outcome. Neural Regen. Res. 11(12), 1900 (2016)

    Article  Google Scholar 

  23. Multipl Skleroz Tanı ve Tedavi Kılavuzu 2016 Basım Tarihi: Galenos Yayınevi, İstanbul (2016)

    Google Scholar 

  24. Sand, I.K.: Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol. 28(3), 193–205 (2015)

    Article  Google Scholar 

  25. Waxman, S.: Multiple Sclerosis as a Neuronal Disease. Elsevier, Amsterdam (2005)

    Google Scholar 

  26. Karaca, Y., Osman, O., Karabudak, R.: Linear modeling of multiple sclerosis and its subgroubs. System 2, 7 (2015)

    Google Scholar 

  27. Siegelmann, H.T.: Complex systems science and brain dynamics. Front. Comput. Neurosci. 4, 7 (2010)

    Article  Google Scholar 

  28. Das, P., Das, A.: A fast and automated segmentation method for detection of masses using folded kernel based fuzzy C-means clustering algorithm. Appl. Soft Comput. 85, 105775 (2019)

    Article  Google Scholar 

  29. William, W., Ware, A., Basaza-Ejiri, A.H., Obungoloch, J.: Cervical cancer classification from Pap-smears using an enhanced Fuzzy C-mean algorithm. Inform. Med. Unlocked 14, 23–33 (2019)

    Article  Google Scholar 

  30. Sheela, C.J.J., Suganthi, G.: Automatic brain tumor segmentation from MRI using greedy snake model and fuzzy C-means optimization. J. King Saud Univ.-Comput. Inf. Sci. (2019)

    Google Scholar 

  31. Thompson, A.J., et al.: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2017)

    Article  Google Scholar 

  32. Karaca, Y., Zhang Y.D., Cattani, C., Ayan, U.: The differential diagnosis of multiple sclerosis using convex combination of infinite kernels. CNS Neurol. Disord.-Drug Targets (Formerly Curr. Drug Targets-CNS Neurol. Disord.) 16(1), 36–43 (2017)

    Google Scholar 

  33. Bushnik, T.: Expanded disability status scale. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds.) Encyclopedia of Clinical Neuropsychology. Springer, New York (2011). https://doi.org/10.1007/978-0-387-79948-3

    Chapter  Google Scholar 

  34. The MathWorks, MATLAB (R2019b). The MathWorks, Inc., Natick (2019)

    Google Scholar 

  35. Vehel, J.L.: FracLab (2000). https://project.inria.fr/fraclab/

  36. Kuklinski, W.S., Chandra, K., Ruttimann, U.E., Webber, R.L.: Application of fractal texture analysis to segmentation of dental radiographs SPIE. Med. Imaging III: Image Process. 1092, 111–117 (1989)

    Google Scholar 

  37. Collins, J.J., De Luca, C.J.: Upright, correlated random walks: a statistical-biomechanics approach to the human postural control system. Chaos 5(1), 57–63 (1994)

    Article  Google Scholar 

  38. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020)

    Article  MathSciNet  Google Scholar 

  39. Granger, C.W.J.: The typical spectral shape of an economic variable. Econometrica 34, 150–161 (1966)

    Article  Google Scholar 

  40. Beran, J.: Statistics for Long Memory Processes. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  41. Coeurjolly, J.F.: Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Infer. Stoch. Process. 4(2), 199–227 (2001)

    Article  MathSciNet  Google Scholar 

  42. Garcin, M.: Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates. Physica A: Stat. Mech. Appl. 483, 462–479 (2017)

    Article  MathSciNet  Google Scholar 

  43. Misawa, M.: Local Hölder regularity of gradients for evolutional p-Laplacian systems. Annali di Matematica 181(4), 389–405 (2002)

    Article  MathSciNet  Google Scholar 

  44. Aizenman, M., Burchard, A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99(3), 419–453 (1999)

    Article  MathSciNet  Google Scholar 

  45. Franchi, B., Lanconelli. E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 10(4), 523–541 (1983)

    Google Scholar 

  46. Tarquis, A., Gim\(\acute{e}\)nez, D., Saa, A., Diaz, M.: Scaling and multiscaling of soil pore systems determined by image analysis. Scal. Methods Soil Phys. 19 (2003)

    Google Scholar 

  47. Lutton, E., Grenier, P., Vehel, J.L.: An interactive EA for multifractal Bayesian denoising. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 274–283. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32003-6_28

    Chapter  Google Scholar 

  48. Pu, Y.F., et al.: Fractional partial differential equation denoising models for texture image. Sci. China Inf. Sci. 57(7), 1–19 (2014). https://doi.org/10.1007/s11432-014-5112-x

    Article  MathSciNet  Google Scholar 

  49. Yau, A.C., Tai, X., Ng, M.K.: Compression and denoising using \(l_{0}\)-norm. Comput. Optim. Appl. 50, 425–444 (2011). https://doi.org/10.1007/s10589-010-9352-4

    Article  MathSciNet  MATH  Google Scholar 

  50. Feder, J.: Fractals (Physics of Solids and Liquids). Plenum, New York (1987)

    Google Scholar 

  51. Li, L., Chang, L., Ke, S., Huang, D.: Multifractal analysis and lacunarity analysis: a promising method for the automated assessment of muskmelon (Cucumis melo L.) epidermis netting. Comput. Electron. Agric. 88, 72–84 (2012)

    Article  Google Scholar 

  52. Kalavathy, S., Suresh, R.M.: Analysis of image denoising using wavelet coefficient and adaptive subband thresholding technique. Int. J. Comput. Sci. (IJCSI) 8, 6 (2011)

    Google Scholar 

  53. Karaca, Y., Moonis, M., Zhang, Y.-D.: Multifractal analysis with L2 norm denoising technique: modelling of MS subgroups classification. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 257–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_22

    Chapter  Google Scholar 

  54. Alruwaili, M., Siddiqi, M.H., Javed, M.A.: A robust clustering algorithm using spatial Fuzzy C-mean for brain MR images. Egypt. Inform. J. (2019)

    Google Scholar 

  55. Jianzhong, W., Kong, J., Lu, M., Qi, M., Zhang, B.: A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Comput. Med. Imaging Graph. 32(8), 685–698 (2008)

    Article  Google Scholar 

  56. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified Fuzzy C-mean algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeliz Karaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karaca, Y., Baleanu, D. (2020). Multifractional Gaussian Process Based on Self-similarity Modelling for MS Subgroups’ Clustering with Fuzzy C-Means. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics