Skip to main content

Domination and Spectral Graph Theory

  • Chapter
  • First Online:
Structures of Domination in Graphs

Part of the book series: Developments in Mathematics ((DEVM,volume 66))

  • 767 Accesses

Abstract

Spectral graph theory studies graphs through the eigenvalues and eigenvectors of matrices associated with them. In this chapter we show how domination parameters have appeared in spectral graph theory, including the domination number γ, the total domination number γ t, and the signed domination number γ s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Alazemi, M. Andelić, S.K. Simić, Eigenvalue location for chain graphs. Linear Algebra Appl. 505, 194–210 (2016). http://dx.doi.org/10.1016/j.laa.2016.04.030

    Article  MathSciNet  Google Scholar 

  2. M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439(1), 21–33 (2013). https://doi.org/10.1016/j.laa.2013.02.030. http://www.sciencedirect.com/science/article/pii/S0024379513001614

  3. M. Aouchiche, P. Hansen, D. Stevanović, A sharp upper bound on algebraic connectivity using domination number. Linear Algebra Appl. 432(11), 2879–2893 (2010). https://doi.org/10.1016/j.laa.2009.12.031

    Article  MathSciNet  Google Scholar 

  4. L. Babai, D.Y. Grigoryev, D.M. Mount, Isomorphism of graphs with bounded eigenvalue multiplicity. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82 (ACM, New York, NY, USA, 1982), pp. 310–324. http://doi.acm.org/10.1145/800070.802206

  5. R.O. Braga, V.M. Rodrigues, V. Trevisan, On the distribution of Laplacian eigenvalues of trees. Discrete Math. 313(21), 2382–2389 (2013). http://dx.doi.org/10.1016/j.disc.2013.06.017

    Article  MathSciNet  Google Scholar 

  6. C. Brand, N. Seifter, Eigenvalues and domination in graphs. Math. Slovaca 46(1), 33–39 (1996)

    MathSciNet  MATH  Google Scholar 

  7. A.E. Brouwer, W. Haemers, Spectra of Graphs (Springer, New York, 2012)

    Book  Google Scholar 

  8. R. Brualdi, E. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones. SIAM J. Algebraic Discrete Methods 7(2), 265–272 (1986). https://doi.org/10.1137/0607030

    Article  MathSciNet  Google Scholar 

  9. S. Butler, A note about cospectral graphs for the adjacency and normalized Laplacian matrices. Linear Multilinear Algebra 58(3), 387–390 (2010). https://doi.org/10.1080/03081080902722741

    Article  MathSciNet  Google Scholar 

  10. S. Butler, F. Chung, Spectral graph theory, in Handbook of Linear Algebra, 2nd edn. (CRC Press, 2017)

    Google Scholar 

  11. D.M. Cardoso, V.V. Lozin, C.J. Luz, M.F. Pacheco, Efficient domination through eigenvalues. Discrete Appl. Math. 214, 54–62 (2016). https://doi.org/10.1016/j.dam.2016.06.014. http://www.sciencedirect.com/science/article/pii/S0166218X16302931

  12. D.M. Cardoso, D.P. Jacobs, V. Trevisan, Laplacian distribution and domination. Graphs Combin. 33(5), 1283–1295 (2017). https://doi.org/10.1007/s00373-017-1844-x

    Article  MathSciNet  Google Scholar 

  13. F.R.K. Chung, Spectral Graph Theory (American Mathematical Society, Providence, 1997)

    MATH  Google Scholar 

  14. E.J. Cockayne, S.T. Hedetniemi, Toward a theory of domination in graphs. Networks 7, 247–261 (1977)

    Article  MathSciNet  Google Scholar 

  15. R.R. Coifman, S. Lafon, Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006). http://dx.doi.org/10.1016/j.acha.2006.04.006. //www.sciencedirect.com/science/article/pii/S1063520306000546. Special Issue: Diffusion Maps and Wavelets

  16. D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian. I. Publ. Inst. Math. (Beograd) (N.S.) 85(99), 19–33 (2009). http://dx.doi.org/10.2298/PIM0999019C

  17. D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian. II. Linear Algebra Appl. 432(9), 2257–2272 (2010). http://dx.doi.org/10.1016/j.laa.2009.05.020

    Article  MathSciNet  Google Scholar 

  18. D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian. III. Appl. Anal. Discrete Math. 4(1), 156–166 (2010). http://dx.doi.org/10.2298/AADM1000001C

    Article  MathSciNet  Google Scholar 

  19. K.C. Das, M. Aouchiche, P. Hansen, On distance Laplacian and distance signless Laplacian eigenvalues of graphs. Linear Multilinear Algebra 0(0), 1–18 (2018). https://doi.org/10.1080/03081087.2018.1491522

  20. P. Delsarte, An algebraic approach to the association schemes of coding theory. Philips Res. Repts. Suppl. 10, 1–54 (1973)

    Google Scholar 

  21. J. Dunbar, S. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, in Graph Theory, Combinatorics, and Algorithms, vol. 1, 2 (Kalamazoo, MI, 1992) (Wiley, New York, 1995), pp. 311–321

    Google Scholar 

  22. S.N. Dusanka Janezic, Ante Milicevic, N. Trinajstic, Graph-Theoretical Matrices in Chemistry (CRC Press, Boca Raton, 2015)

    Google Scholar 

  23. Y.Z. Fan, Y.Y. Tan, The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number. Discrete Mathematics 334, 20–25 (2014). https://doi.org/10.1016/j.disc.2014.06.021. http://www.sciencedirect.com/science/article/pii/S0012365X14002489

  24. M. Fiedler, Algebraic connectivity of graphs. Czechoslovak Math. J. 23(98), 298–305 (1973)

    Article  MathSciNet  Google Scholar 

  25. M. Fürer, C. Hoppen, D.P. Jacobs, V. Trevisan, Eigenvalue location in graphs of small clique-width. Linear Algebra Appl. 560, 56–85 (2019). https://doi.org/10.1016/j.laa.2018.09.015. http://www.sciencedirect.com/science/article/pii/S0024379518304506

  26. R.L. Graham, H.O. Pollak, On the addressing problem for loop switching. Bell Syst. Tech. J. 50(8), 2495–2519 (1971). https://doi.org/10.1002/j.1538-7305.1971.tb02618.x

    Article  MathSciNet  Google Scholar 

  27. R. Grone, R. Merris, The Laplacian spectrum of a graph. II. SIAM J. Discrete Math. 7(2), 221–229 (1994). https://doi.org/10.1137/S0895480191222653

    Article  MathSciNet  Google Scholar 

  28. J.M. Guo, X.L. Wu, J.M. Zhang, K.F. Fang, On the distribution of Laplacian eigenvalues of a graph. Acta Math. Sin. (Engl. Ser.) 27(11), 2259–2268 (2011). http://dx.doi.org/10.1007/s10114-011-8624-y

  29. I. Gutman, Acyclic systems with extremal Hückel π-electron energy. Theoretica Chimica Acta 45, 79–87 (1977)

    Article  Google Scholar 

  30. I. Gutman, X. Li, Energies of Graphs - Theory and Applications (University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, 2016), p. 293

    Google Scholar 

  31. W.H. Haemers, Are almost all graphs determined by their spectrum? Not. S. Afr. Math. Soc. 47(1), 42–45 (2016)

    MathSciNet  Google Scholar 

  32. P. Hansen, C. Lucas, Bounds and conjectures for the signless Laplacian index of graphs. Linear Algebra Appl. 432(12), 3319–3336 (2010). https://doi.org/10.1016/j.laa.2010.01.027. http://www.sciencedirect.com/science/article/pii/S0024379510000406

  33. J. Har, A note on Laplacian eigenvalues and domination. Linear Algebra Appl. 449, 115–118 (2014). http://dx.doi.org/10.1016/j.laa.2014.02.025

    Article  MathSciNet  Google Scholar 

  34. C.X. He, M. Zhou, A sharp upper bound on the least signless Laplacian eigenvalue using domination number. Graphs Comb. 30(5), 1183–1192 (2014). https://doi.org/10.1007/s00373-013-1330-z

    Article  MathSciNet  Google Scholar 

  35. C.X. He, B.F. Wu, Z.S. Yu, Extremal energies of trees with a given domination number. MATCH Commun. Math. Comput. Chem. 64(1), 169–180 (2010). http://match.pmf.kg.ac.rs/electronic_versions/Match64/n1/match64n1_169-180.pdf

    MathSciNet  Google Scholar 

  36. S.T. Hedetniemi, D.P. Jacobs, V. Trevisan, Domination number and Laplacian eigenvalue distribution. Eur. J. Combin. 53, 66–71 (2016). URL http://dx.doi.org/10.1016/j.ejc.2015.11.005

  37. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, New York, 2012)

    Book  Google Scholar 

  38. D.P. Jacobs, V. Trevisan, Locating the eigenvalues of trees. Linear Algebra Appl. 434(1), 81–88 (2011). http://dx.doi.org/10.1016/j.laa.2010.08.006

    Article  MathSciNet  Google Scholar 

  39. D.P. Jacobs, V. Trevisan, F. Tura, Eigenvalue location in threshold graphs. Linear Algebra Appl. 439(10), 2762–2773 (2013). http://dx.doi.org/10.1016/j.laa.2013.07.030

    Article  MathSciNet  Google Scholar 

  40. D.P. Jacobs, V. Trevisan, F.C. Tura, Eigenvalue location in cographs. Discrete Appl. Math. 245, 220–235 (2018). https://doi.org/10.1016/j.dam.2017.02.007. http://www.sciencedirect.com/science/article/pii/S0166218X17300926

  41. F. Jaeger, C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d’absorption d’un graphe simple. C. R. Acad. Sci. Paris Sér. A-B 274, A728–A730 (1972)

    MathSciNet  MATH  Google Scholar 

  42. H. Liu, M. Lu, Bounds of signless Laplacian spectrum of graphs based on the k-domination number. Linear Algebra Appl. 440, 83–89 (2014). https://doi.org/10.1016/j.laa.2013.10.020. http://www.sciencedirect.com/science/article/pii/S002437951300640X

  43. M. Lu, H. Liu, F. Tian, Bounds of Laplacian spectrum of graphs based on the domination number. Linear Algebra Appl. 402, 390–396 (2005). https://doi.org/10.1016/j.laa.2005.01.006

    Article  MathSciNet  Google Scholar 

  44. U. Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). http://dx.doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  45. B. McKay, On the spectral characterisation of trees. Ars Combin. 3, 219–232 (1979)

    MathSciNet  MATH  Google Scholar 

  46. V. Nikiforov, Bounds of graph eigenvalues. I. Linear Algebra Appl. 420(2–3), 667–671 (2007). http://dx.doi.org/10.1016/j.laa.2006.08.020

    Article  MathSciNet  Google Scholar 

  47. O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ., 1962)

    MATH  Google Scholar 

  48. P. Rowlinson, Dominating sets and eigenvalues of graphs. Bull. Lond. Math. Soc. 26(3), 248–254 (1994). https://doi.org/10.1112/blms/26.3.248

    Article  MathSciNet  Google Scholar 

  49. A.J. Schwenk, Almost all trees are cospectral, in New Directions in the Theory of Graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, MI, 1971), pp. 275–307 (Academic Press, New York, 1973)

    Google Scholar 

  50. W. Shi, L. Kang, S. Wu, Bounds on Laplacian eigenvalues related to total and signed domination of graphs. Czechoslov. Math. J. 60(2), 315–325 (2010). https://doi.org/10.1007/s10587-010-0035-1

    Article  MathSciNet  Google Scholar 

  51. D. Stevanović, Spectral Radius of Graphs (Academic Press, New York, 2015)

    MATH  Google Scholar 

  52. D. Stevanović, M. Aouchiche, P. Hansen, On the spectral radius of graphs with a given domination number. Linear Algebra Appl. 428(8), 1854–1864 (2008). https://doi.org/10.1016/j.laa.2007.10.024. http://www.sciencedirect.com/science/article/pii/S0024379507004831

  53. E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373, 241–272 (2003)

    Article  MathSciNet  Google Scholar 

  54. E.R. van Dam, W.H. Haemers, Developments on spectral characterizations of graphs. Discrete Mathematics 309(3), 576–586 (2009). https://doi.org/10.1016/j.disc.2008.08.019. http://www.sciencedirect.com/science/article/pii/S0012365X08005219. International Workshop on Design Theory, Graph Theory, and Computational Methods

  55. C. Van Nuffelen, Rank and domination number, in Graphs and Other Combinatorial Topics, Teubner-Texte Math., vol. 59, ed. by M. Fiedler. Proc. 3rd Czech. Symp. Graph Theory, Prague 1982, (1983), pp. 209–211

    Google Scholar 

  56. Y. Wang, B. Zhou, On distance spectral radius of graphs. Linear Algebra Appl. 438(8), 3490–3503 (2013). https://doi.org/10.1016/j.laa.2012.12.024

    Article  MathSciNet  Google Scholar 

  57. R. Xing, B. Zhou, Laplacian and signless Laplacian spectral radii of graphs with fixed domination number. Math. Nachr. 288(4), 476–480 (2015). http://dx.doi.org/10.1002/mana.201300331

    Article  MathSciNet  Google Scholar 

  58. K. Xu, L. Feng, Extremal energies of trees with a given domination number. Linear Algebra Appl. 435(10), 2382–2393 (2011). https://doi.org/10.1016/j.laa.2010.09.008. http://www.sciencedirect.com/science/article/pii/S0024379510004714. Special Issue in Honor of Dragos Cvetkovic

  59. G. Yu, S.G. Guo, R. Zhang, Y. Wu, The domination number and the least q-eigenvalue. Appl. Math. Comput. 244, 274–282 (2014). https://doi.org/10.1016/j.amc.2014.06.076. http://www.sciencedirect.com/science/article/pii/S0096300314009205

  60. L. Zhou, B. Zhou, Z. Du, On the number of Laplacian eigenvalues of trees smaller than two. Taiwanese J. Math. 19(1), 65–75 (2015)

    Article  MathSciNet  Google Scholar 

  61. B.X. Zhu, The least eigenvalue of a graph with a given domination number. Linear Algebra Appl. 437(11), 2713–2718 (2012). https://doi.org/10.1016/j.laa.2012.06.007

    Article  MathSciNet  Google Scholar 

  62. J. Zhu, Minimal energies of trees with given parameters. Linear Algebra Appl. 436(9), 3120–3131 (2012). https://doi.org/10.1016/j.laa.2011.10.002. http://www.sciencedirect.com/science/article/pii/S0024379511006926

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Hoppen or Vilmar Trevisan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoppen, C., Jacobs, D.P., Trevisan, V. (2021). Domination and Spectral Graph Theory. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds) Structures of Domination in Graphs . Developments in Mathematics, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-030-58892-2_9

Download citation

Publish with us

Policies and ethics