Skip to main content

Assessing Film Coefficients of Microchannel Heat Sinks via Cuckoo Search Algorithm

  • Chapter
  • First Online:
Heuristics for Optimization and Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 906))

  • 601 Accesses

Abstract

Film transfer coefficient is one of the most challenging variables to measure in experimental heat transfer. This happens because such a variable depends on too many others. Examples include type of media (gas or liquid), body geometry, fluid flow, thermal conductivity, and many more thermodynamic properties. In chapter proposes an estimation strategy for the film transfer coefficient by solving an inverse heat transfer problem via the Cuckoo Search global optimization algorithm. The designs were achieved through the entropy generation minimization criterion, also powered by Cuckoo Search, employing several specifications (material, working fluid and heat power). Obtained results show great estimations for signal-to-noise ratios above 30 dB, which can be reached with virtually any modern temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Alfaryjat, D. Stanciu, A. Dobrovicescu, V. Badescu, M. Aldhaidhawi, Numerical investigation of entropy generation in microchannels heat sink with different shapes. IOP Conf. Ser.: Mater. Sci. Eng. 147, 012134 (2016)

    Article  Google Scholar 

  2. A. Bejan, Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    Article  Google Scholar 

  3. K.K. Bodla, J.Y. Murthy, S.V. Garimella, Optimization under uncertainty applied to heat sink design. J. Heat Transf. 135(1), 011012 (2012)

    Article  Google Scholar 

  4. K.K. Bodla, J.Y. Murthy, S.V. Garimella, Optimization under uncertainty for electronics cooling design applications, 13th IEEE ITHERM Conference, pp. 1191–1201 (2012)

    Google Scholar 

  5. S. Chanda, C. Balaji, S.P. Venkateshan, G.R. Yenni, Estimation of principal thermal conductivities of layered honeycomb composites using ANN–GA based inverse technique. Int. J. Thermal Sci. 111, 423–436 (2017)

    Google Scholar 

  6. H.-T. Chen, H.-C. Tseng, S.-W. Jhu, J.-R. Chang, Numerical and experimental study of mixed convection heat transfer and fluid flow characteristics of plate-fin heat sinks. Int. J. Heat Mass Transf. 111, 1050–1062 (2017)

    Article  Google Scholar 

  7. X. Chen, H. Ye, X. Fan, T. Ren, G. Zhang, A review of small heat pipes for electronics. Appl. Therm. Eng. 96, 1–17 (2016)

    Article  Google Scholar 

  8. I. Cornejo, G. Cornejo, C. Ramírez, S. Almonacid, R. Simpson, Inverse method for the simultaneous estimation of the thermophysical properties of foods at freezing temperatures. J. Food Eng. 191, 37–47 (2016)

    Article  Google Scholar 

  9. J.M. Cruz-Duarte, A. Garcia-Perez, I.M. Amaya-Contreras, C.R. Correa-Cely, R.J. Romero-Troncoso, J.G. Avina-Cervantes, Design of microelectronic cooling systems using a thermodynamic optimization strategy based on cuckoo search, in IEEE Transactions on Components, Packaging and Manufacturing Technology, pp. 1–9 (2017)

    Google Scholar 

  10. J.K. Dhiman, S.K., Prasad, Inverse estimation of heat flux from a hollow cylinder in cross-flow of air. Appl. Therm. Eng. 113(113), 952–961 (2017)

    Google Scholar 

  11. P. Duda, Solution of inverse heat conduction problem using the Tikhonov regularization method. J. Therm. Sci. 26(1), 60–65 (2017)

    Article  Google Scholar 

  12. A. Ebrahimi, F. Rikhtegar, A. Sabaghan, E. Roohi, Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy 101, 190–201 (2016)

    Article  Google Scholar 

  13. C.H. Huang, Y.C. Liu, H. Ay, The design of optimum perforation diameters for pin fin array for heat transfer enhancement. Int. J. Heat Mass Transf. 84, 752–765 (2015)

    Google Scholar 

  14. H. Huang, N. Borhani, N. Lamaison, J.R. Thome, A new method for reducing local heat transfer data in multi-microchannel evaporators. Int. J. Therm. Sci. 115, 112–124 (2017)

    Article  Google Scholar 

  15. S.T. Kadam, R. Kumar, Twenty first century cooling solution: microchannel heat sinks. Int. J. Therm. Sci. 85, 73–92 (2014)

    Article  Google Scholar 

  16. S.G. Kandlikar, Review and projections of integrated cooling systems for three-dimensional integrated circuits. J. Electron. Packag. 136(2), 24001 (2014)

    Google Scholar 

  17. S.S. Khaleduzzaman, M.R. Sohel, R. Saidur, I.M. Mahbubul, I.M. Shahrul, B.A. Akash, J. Selvaraj, Energy and exergy analysis of alumina-water nanofluid for an electronic liquid cooling system. Int. Commun. Heat Mass Transf. 57, 118–127 (2014)

    Article  Google Scholar 

  18. W.A. Khan, J.R. Culham, M.M. Yovanovich, Optimization of microchannel heat sinks using entropy generation minimization method. IEEE Trans. Compon. Packag. Technol. 32(2), 243–251 (2009)

    Google Scholar 

  19. F. Kreith, R.M. Manglik, M.S. Bohn, Principles of Heat Transfer, 7th edn. (Cengage Learning, Stamford, CT, 2011)

    Google Scholar 

  20. J. Li, N. Jiang, Z. Gao, H. Liu, G. Wang, An inverse heat conduction problem of estimating the multiple heat sources for mould heating system of the injection machine. Inverse Probl. Sci. Eng. 24(9), 1587–1605 (2016)

    Article  MathSciNet  Google Scholar 

  21. J.H. Lienhard IV, J.H. Lienhard V, A Heat Transfer Textbook, 4th edn. (Phlogiston Press, Cambridge, 2012)

    Google Scholar 

  22. L. Lin, Y.-Y. Chen, X.-X. Zhang, X.-D. Wang, Optimization of geometry and flow rate distribution for double-layer microchannel heat sink. Int. J. Therm. Sci. 78, 158–168 (2014)

    Article  Google Scholar 

  23. D. Liu, S.V. Garimella, Analysis and optimization of the thermal performance of microchannel heat sinks. Int. J. Numer. Methods Heat Fluid Flow 15(1), 7–26 (2005)

    Article  Google Scholar 

  24. X. Luo, Z. Yang, A new approach for estimation of total heat exchange factor in reheating furnace by solving an inverse heat conduction problem. Int. J. Heat Mass Transf. 112, 1062–1071 (2017)

    Article  Google Scholar 

  25. B. Maciejewska, M. Piasecka, Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel. Int. J. Heat Mass Transf. 107, 925–933 (2017)

    Article  Google Scholar 

  26. F. Mohebbi, M. Sellier, T. Rabczuk, Estimation of linearly temperature-dependent thermal conductivity using an inverse analysis. Int. J. Therm. Sci. 117, 68–76 (2017)

    Article  Google Scholar 

  27. A.M. Morega, Principles of heat transfer, in Mechanical Engineer’s Handbook, Chap. 7, 1st edn. by D.B. Marghitu (Academic Press, Cambridge, 2001), pp. 445–557

    Google Scholar 

  28. S. Mu, H. Li, J. Wang, X. Liu, Optimization based inversion method for the inverse heat conduction problems. IOP Conf. Ser.: Earth Environ. Sci. 64(1), 9 (2017)

    Google Scholar 

  29. M.N. Ozisik, Inverse Heat Transfer: Fundamentals and Applications (CRC Press, Boca Raton, 2000)

    Google Scholar 

  30. A. Reddy, A critical review of entropy generation analysis in micro channel using nano fluids. Int. J. Sci. Dev. Res. 1(5), 7–12 (2016)

    Google Scholar 

  31. S.K. Sahoo, M.K. Das, P. Rath, Application of TCE-PCM Based Heat Sinks for Cooling of Electronic Components: A Review, vol. 59 (Elsevier, Amsterdam, 2016)

    Google Scholar 

  32. B. Shao, Z. Sun, L. Wang, Optimization design of microchannel cooling heat sink. Int. J. Numer. Methods Heat Fluid Flow 17(6), 628–637 (2007)

    Article  Google Scholar 

  33. B. Shao, L. Wang, H. Cheng, J. Li, Optimization and Numerical Simulation of Multi-layer Microchannel Heat Sink. Proc. Eng. 31, 928–933 (2012)

    Article  Google Scholar 

  34. R.S. Sudheesh, N.S. Prasad, Comparative study of heat transfer parameter estimation using inverse heat transfer models of a trailing liquid nitrogen jet in welding. Heat Transf. Eng. 36(2), 178–185 (2015)

    Google Scholar 

  35. D.B.B. Tuckerman, R.F.W.F.W. Pease, High-performance heat sinking for VLSI. IEEE Electron Device Lett. 2(5), 126–129 (1981)

    Article  Google Scholar 

  36. G. Wang, L. Zhang, X. Wang, B.L. Tai, An inverse method to reconstruct the heat flux produced by bone grinding tools. Int. J. Therm. Sci. 101, 85–92 (2016)

    Article  Google Scholar 

  37. Y. Wang, X. Luo, Yu. Yang, Q. Yin, Evaluation of heat transfer coefficients in continuous casting under large disturbance by weighted least squares Levenberg-Marquardt method. Appl. Therm. Eng. 111, 989–996 (2017)

    Article  Google Scholar 

  38. X.-S. Yang, S. Deb, Cuckoo search via levy flights, in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (IEEE, Piscataway, N.J., 2009), pp. 210–214

    Google Scholar 

  39. Y.-T. Yang, K.-T. Tsai, Y.-H. Wang, S.-H. Lin, Numerical study of microchannel heat sink performance using nanofluids. Int. Commun. Heat Mass Transf. 57, 27–35 (2014)

    Article  Google Scholar 

  40. N. Zabaras, Inverse problems in heat transfer, in Handbook of Numerical Heat Trasnfer (Wiley, New York, NY, 2006), pp. 525–557

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Correa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruz-Duarte, J.M., García-Pérez, A., Amaya-Contreras, I.M., Correa, R. (2021). Assessing Film Coefficients of Microchannel Heat Sinks via Cuckoo Search Algorithm. In: Yalaoui, F., Amodeo, L., Talbi, EG. (eds) Heuristics for Optimization and Learning. Studies in Computational Intelligence, vol 906. Springer, Cham. https://doi.org/10.1007/978-3-030-58930-1_25

Download citation

Publish with us

Policies and ethics