Skip to main content

Hardware Fingerprinting for the ARINC 429 Avionic Bus

  • Conference paper
  • First Online:
Computer Security – ESORICS 2020 (ESORICS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12309))

Included in the following conference series:

Abstract

ARINC 429 is the most common data bus in use today in civil avionics. Despite this, the protocol lacks any form of source authentication. A technician with physical access to the bus is able to replace a transmitter by a rogue device, and receivers will accept its malicious data as they have no method of verifying the authenticity of messages.

Updating the protocol would close off security loopholes in new aircrafts but would require thousands of airplanes to be modified. An interim solution is required. We propose a hardware fingerprinting method for the ARINC 429 data bus, and analyze its performance in a sender authentication setting. Our approach relies on the observation that changes in hardware, such as replacing a transmitter or a receiver with a rogue one, modify the electric signal of the transmission.

In this paper we explore the feasibility of designing an intrusion detection system based on hardware fingerprinting. Our analysis includes both a theoretical Markov-chain model and an extensive empirical evaluation. For this purpose, we collected a data corpus of ARINC 429 data traces, which may be of independent interest since, to the best of our knowledge, no public corpus is available.

In our experiments, we show that it is feasible for an intrusion detection system to achieve a near-zero false alarms per second, while detecting a rogue transmitter in under 50 ms, and detecting a rogue receiver in under 3 s. This would allow a rogue component installed by a malicious technician to be detected during the pre-flight checks, well before the aircraft takes off. This is made possible due to the fact that we rely on the analog properties, and not on the digital content of the transmissions. Thus we are able to detect a hardware switch as soon as it occurs, even if the data that is being transmitted is completely normal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aeronautical Radio INC.: Mark 33 digital information transfer system (DITS), May 2004. http://www.bosch-semiconductors.de/media/ubk. ARINC specification 429 part 1–17

  2. Astronautics C.A. LTD: Astronautics EDCU Brochure (2019). http://www.astronautics.co.il/sites/default/files/edcu.pdf

  3. Astronautics C.A. LTD: home page (2019). http://www.astronautics.com

  4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM SIGMOD Record, vol. 29, pp. 93–104. ACM (2000)

    Google Scholar 

  5. Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with radiometric signatures. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, pp. 116–127. ACM (2008)

    Google Scholar 

  6. Cho, K.T., Shin, K.G.: Viden: attacker identification on in-vehicle networks. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1109–1123. ACM (2017)

    Google Scholar 

  7. Choi, W., Jo, H.J., Woo, S., Chun, J.Y., Park, J., Lee, D.H.: Identifying ECUs using inimitable characteristics of signals in controller area networks. IEEE Trans. Veh. Technol. 67(6), 4757–4770 (2018)

    Article  Google Scholar 

  8. Choi, W., Joo, K., Jo, H.J., Park, M.C., Lee, D.H.: VoltageIDS: low-level communication characteristics for automotive intrusion detection system. IEEE Trans. Inf. Forensics Secur. 13(8), 2114–2129 (2018)

    Article  Google Scholar 

  9. Costin, A., Francillon, A.: Ghost in the air (traffic): on insecurity of ADS-B protocol and practical attacks on ADS-B devices. Black Hat USA, pp. 1–12 (2012)

    Google Scholar 

  10. Das, A., Borisov, N., Caesar, M.: Tracking mobile web users through motion sensors: attacks and defenses. In: NDSS (2016)

    Google Scholar 

  11. Dey, S., Roy, N., Xu, W., Choudhury, R.R., Nelakuditi, S.: AccelPrint: imperfections of accelerometers make smartphones trackable. In: NDSS (2014)

    Google Scholar 

  12. Ellis, K., Serinken, N.: Characteristics of radio transmitter fingerprints. Radio Sci. 36(4), 585–597 (2001)

    Article  Google Scholar 

  13. Excalibur Systems: M4K429RTx test and simulation module (2019). https://www.mil-1553.com/m4k429rtx

  14. Fuchs, C.M., et al.: The evolution of avionics networks from ARINC 429 to AFDX. Innov. Internet Technol. Mob. Commun. (IITM) Aerosp. Netw. (AN) 65, 1551–3203 (2012)

    Google Scholar 

  15. Gerdes, R.M., Mina, M., Russell, S.F., Daniels, T.E.: Physical-layer identification of wired ethernet devices. IEEE Trans. Inf. Forensics Secur. 7(4), 1339–1353 (2012)

    Article  Google Scholar 

  16. Gilboa-Markevich, N., Wool, A.: Hardware fingerprinting for the ARINC 429 avionic bus. Technical report arXiv:2003.12456 [cs.CR] (2020). http://arxiv.org/abs/2003.12456

  17. Holt Integrated Circuits INC.: ADK-3200: HI-3200 avionics data management engine evaluation board (2011). http://www.holtic.com/product/p/pb/15-adk-3200-hi-3200-avionics-data-management-engine-evaluation-board.aspx

  18. Kneib, M., Huth, C.: Scission: signal characteristic-based sender identification and intrusion detection in automotive networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 787–800. ACM (2018)

    Google Scholar 

  19. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE Trans. Dependable Secure Comput. 2(2), 93–108 (2005)

    Article  Google Scholar 

  20. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)

    Article  Google Scholar 

  21. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study of anomaly detection schemes in network intrusion detection. In: Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 25–36. SIAM (2003)

    Google Scholar 

  22. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015, p. 91 (2015)

    Google Scholar 

  23. Moir, I., Seabridge, A., Jukes, M.: Data bus networks (chapter 3). In: Civil Avionics Systems, pp. 79–118. Wiley, Chichester (2013)

    Google Scholar 

  24. Murvay, P.S., Groza, B.: Source identification using signal characteristics in controller area networks. IEEE Signal Process. Lett. 21(4), 395–399 (2014)

    Article  Google Scholar 

  25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig. Process. 99, 215–249 (2014)

    Article  Google Scholar 

  27. Robert Bosch GmbH: CAN specification, v2.0 (1991)

    Google Scholar 

  28. Smith, M., Strohmeier, M., Harman, J., Lenders, V., Martinovic, I.: A view from the Cockpit: exploring pilot reactions to attacks on avionic systems. In: Network and Distributed Systems Security (NDSS) Symposium. Internet Society, San Diego (2020)

    Google Scholar 

  29. Spitzer, C.R.: ARINC specification 429 mark 33 digital information transfer system (chapter 2). In: Avionics: Elements, Software and Functions. The Electrical Engineering Handbook Series. CRC Press, Boca Raton (2007)

    Google Scholar 

  30. Uluagac, A.S., Radhakrishnan, S.V., Corbett, C., Baca, A., Beyah, R.: A passive technique for fingerprinting wireless devices with wired-side observations. In: 2013 IEEE Conference on Communications and Network Security (CNS), pp. 305–313. IEEE (2013)

    Google Scholar 

  31. Xu, Q., Zheng, R., Saad, W., Han, Z.: Device fingerprinting in wireless networks: challenges and opportunities. IEEE Commun. Surv. Tutorials 18(1), 94–104 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Interdisciplinary Cyber Research Center at Tel Aviv University. The authors would like to thank Astronautics C.A. LTD. for sharing their equipment and expert knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishai Wool .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilboa-Markevich, N., Wool, A. (2020). Hardware Fingerprinting for the ARINC 429 Avionic Bus. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds) Computer Security – ESORICS 2020. ESORICS 2020. Lecture Notes in Computer Science(), vol 12309. Springer, Cham. https://doi.org/10.1007/978-3-030-59013-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59013-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59012-3

  • Online ISBN: 978-3-030-59013-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics