Skip to main content

Pancreatic Tumor Microenvironment

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1296))

Abstract

The pancreatic ductal adenocarcinoma (PDAC) microenvironment is a diverse and complex milieu of immune, stromal, and tumor cells and is characterized by a dense stroma, which mediates the interaction between the tumor and the immune system within the tumor microenvironment (TME). The interaction between stromal and tumor cells signals and shapes the immune infiltration of TME. The desmoplastic compartment contains infiltrated immune cells including tumor-associated macrophages (TAMs) and large numbers of fibroblasts/myofibroblasts dominated by pancreatic stellate cells (PSCs) which contribute to fibrosis. The highly fibrotic stroma with its extensive infiltration of immunosuppressive cells forms the major component of the pro-tumorigenic microenvironment (Laklai et al. Nat Med 22:497–505, 2016, Zhu et al. Cancer Res 74:5057–5069, 2014) provides a barrier to the delivery of cytotoxic agents and limits T-cell access to tumor cells (Feig et al. Proc Natl Acad Sci USA 110:20212–20217, 2013, Provenzano et al Cancer Cell 21:418–429, 2012). Activated PSCs reduced infiltration of cytotoxic T cells to the juxtatumoral stroma (immediately adjacent to the tumor epithelial cells) of PDAC (Ene-Obong et al. Gastroenterology 145:1121–1132, 2013). M1 macrophages activate an immune response against tumor, but M2 macrophages are involved in immunosuppression promoting tumor progression (Noy and Pollard Immunity 41:49–61, 2014, Ruffell et al. Trends Immunol 33:119–126, 2012). The desmoplastic stroma is reported to protect tumor cells against chemotherapies, promoting their proliferation and migration. However, experimental depletion of the desmoplastic stroma has led to more aggressive cancers in animal studies (Nielsen et al. World J Gastroenterol 22:2678–2700, 2016). Hence reprogramming rather than simple depletion of the PDAC stroma has the potential for developing new therapeutic strategies for PC treatment. Modulation of PSCs/fibrosis and immune infiltration/inflammation composes the major aspects of TME reprogramming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Laklai H, Miroshnikova YA, Pickup MW et al (2016) Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med 22:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu Y, Knolhoff BL, Meyer MA et al (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74:5057–5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feig C, Jones JO, Kraman M et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110:20212–20217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Provenzano PP, Cuevas C, Chang AE et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ene-Obong A, Clear AJ, Watt J et al (2013) Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology 145:1121–1132

    Article  CAS  PubMed  Google Scholar 

  6. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nielsen MF, Mortensen MB, Detlefsen S (2016) Key players in pancreatic cancer-stroma interaction: Cancer-associated fibroblasts, endothelial and inflammatory cells. World J Gastroenterol 22:2678–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics 2019. CA Cancer J Clin 69:7–34

    Article  PubMed  Google Scholar 

  10. Rahib L, Smith BD, Aizenberg R et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2921

    Article  CAS  PubMed  Google Scholar 

  11. Neesse A, Algul H, Tuveson DA et al (2015) Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64:1476–1484

    Article  CAS  PubMed  Google Scholar 

  12. Neesse A, Michl P, Frese KK et al (2011) Stromal biology and therapy in pancreatic cancer. Gut 60:861–868

    Article  PubMed  Google Scholar 

  13. Vonlaufen A, Joshi S, Qu C et al (2008) Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res 68:2085–2093

    Article  CAS  PubMed  Google Scholar 

  14. Gore J, Korc M (2014) Pancreatic cancer stroma: friend or foe? Cancer Cell 25:711–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feig C, Gopinathan A, Neesse A et al (2012) The pancreas cancer microenvironment. Clin Cancer Res 18:4266–4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kleeff J, Korc M, Apte M et al (2016) Pancreatic cancer. Nat Rev Dis Primers 2:16022

    Article  PubMed  Google Scholar 

  17. Watari N, Hotta Y, Mabuchi Y (1982) Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin a administration. Okajimas Folia Anat Jpn 58:837–858

    Article  CAS  PubMed  Google Scholar 

  18. Apte MV, Haber PS, Applegate TL et al (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bachem MG, Schneider E, Gross H et al (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432

    Article  CAS  PubMed  Google Scholar 

  20. Erkan M, Adler G, Apte MV et al (2012) StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61:172–178

    Article  CAS  PubMed  Google Scholar 

  21. Han S, Delitto D, Zhang D et al (2015) Primary outgrowth cultures are a reliable source of human pancreatic stellate cells. Lab Investig 95:1331–1340

    Article  CAS  PubMed  Google Scholar 

  22. Erkan M, Michalski CW, Rieder S et al (2008) The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 6:1155–1161

    Article  PubMed  Google Scholar 

  23. Sinn M, Denkert C, Striefler JK et al (2014) Alpha-smooth muscle actin expression and desmoplastic stromal reaction in pancreatic cancer: results from the CONKO-001 study. Br J Cancer 111:1917–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lunardi S, Muschel RJ, Brunner TB (2014) The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett 343:147–155

    Article  CAS  PubMed  Google Scholar 

  25. Fujita H, Ohuchida K, Mizumoto K et al (2009) Tumor-stromal interactions with direct cell contacts enhance proliferation of human pancreatic carcinoma cells. Cancer Sci 100:2309–2317

    Article  CAS  PubMed  Google Scholar 

  26. Jiang HB, Xu M, Wang XP (2008) Pancreatic stellate cells promote proliferation and invasiveness of human pancreatic cancer cells via galectin-3. World J Gastroenterol 14:2023–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bachem MG, Schunemann M, Ramadani M et al (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128:907–921

    Article  CAS  PubMed  Google Scholar 

  28. Hwang RF, Moore T, Arumugam T et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68:918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Z, Vonlaufen A, Phillips PA et al (2010) Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol 177:2585–2596

    Article  PubMed  PubMed Central  Google Scholar 

  30. Froeling FE, Feig C, Chelala C et al (2011) Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression. Gastroenterology 141:1486-97–1497 e1–14

    Article  CAS  Google Scholar 

  31. Chronopoulos A, Robinson B, Sarper M et al (2016) ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun 7:12630

    Article  PubMed  PubMed Central  Google Scholar 

  32. Di Maggio F, Arumugam P, Delvecchio FR et al (2016) Pancreatic stellate cells regulate blood vessel density in the stroma of pancreatic ductal adenocarcinoma. Pancreatology 16:995–1004

    Article  PubMed  CAS  Google Scholar 

  33. Clark CE, Hingorani SR, Mick R et al (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67:9518–9527

    Article  CAS  PubMed  Google Scholar 

  34. Tang D, Yuan Z, Xue X et al (2012) High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int J Cancer 130:2337–2348

    Article  CAS  PubMed  Google Scholar 

  35. Kraman M, Bambrough PJ, Arnold JN et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830

    Article  CAS  PubMed  Google Scholar 

  36. Apte MV, Pirola RC, Wilson JS (2012) Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol 3:344

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bailey JM, Swanson BJ, Hamada T et al (2008) Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 14:5995–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shek FW, Benyon RC, Walker FM et al (2002) Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol 160:1787–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Erkan M, Kleeff J, Gorbachevski A et al (2007) Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 132:1447–1464

    Article  CAS  PubMed  Google Scholar 

  40. Weniger M, Honselmann KC, Liss AS (2018) The extracellular matrix and pancreatic Cancer: a complex relationship. Cancers (Basel) 10

    Google Scholar 

  41. Whatcott CJ, Diep CH, Jiang P et al (2015) Desmoplasia in primary tumors and metastatic lesions of pancreatic Cancer. Clin Cancer Res 21:3561–3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Armstrong T, Packham G, Murphy LB et al (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10:7427–7437

    Article  CAS  PubMed  Google Scholar 

  43. Berchtold S, Grunwald B, Kruger A et al (2015) Collagen type V promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Cancer Lett 356:721–732

    Article  CAS  PubMed  Google Scholar 

  44. Grzesiak JJ, Tran Cao HS, Burton DW et al (2011) Knockdown of the beta(1) integrin subunit reduces primary tumor growth and inhibits pancreatic cancer metastasis. Int J Cancer 129:2905–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shintani Y, Fukumoto Y, Chaika N et al (2008) Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol 180:1277–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koenig A, Mueller C, Hasel C et al (2006) Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res 66:4662–4671

    Article  CAS  PubMed  Google Scholar 

  47. DuFort CC, DelGiorno KE, Carlson MA et al (2016) Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase. Biophys J 110:2106–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Birbrair A, Zhang T, Wang ZM et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307:C25–C38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koong AC, Mehta VK, Le QT et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922

    Article  CAS  PubMed  Google Scholar 

  50. Hiraoka N, Ino Y, Sekine S et al (2010) Tumour necrosis is a postoperative prognostic marker for pancreatic cancer patients with a high interobserver reproducibility in histological evaluation. Br J Cancer 103:1057–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang K, Baldwin GS, Nikfarjam M et al (2018) p21-activated kinase signalling in pancreatic cancer: new insights into tumour biology and immune modulation. World J Gastroenterol 24:3709–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li N, Li Y, Li Z et al (2016) Hypoxia inducible factor 1 (HIF-1) recruits macrophage to activate pancreatic stellate cells in pancreatic ductal adenocarcinoma. Int J Mol Sci 17

    Google Scholar 

  53. Gunda V, Kumar S, Dasgupta A et al (1742) Hypoxia-induced Metabolomic alterations in pancreatic Cancer cells. Methods Mol Biol 2018:95–105

    Google Scholar 

  54. Rausch V, Liu L, Apel A et al (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227:325–335

    Article  CAS  PubMed  Google Scholar 

  55. Cheng ZX, Sun B, Wang SJ et al (2011) Nuclear factor-kappaB-dependent epithelial to mesenchymal transition induced by HIF-1alpha activation in pancreatic cancer cells under hypoxic conditions. PLoS One 6:e23752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hotz B, Arndt M, Dullat S et al (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13:4769–4776

    Article  CAS  PubMed  Google Scholar 

  57. Li M, Xie H, Liu Y et al (2019) Knockdown of hypoxia-inducible factor-1 alpha by tumor targeted delivery of CRISPR/Cas9 system suppressed the metastasis of pancreatic cancer. J Control Release 304:204–215

    Article  CAS  PubMed  Google Scholar 

  58. Baumgart S, Chen NM, Siveke JT et al (2014) Inflammation-induced NFATc1-STAT3 transcription complex promotes pancreatic cancer initiation by KrasG12D. Cancer Discov 4:688–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roghanian A, Fraser C, Kleyman M et al (2016) B cells promote pancreatic tumorigenesis. Cancer Discov 6:230–232

    Article  CAS  PubMed  Google Scholar 

  60. Inman KS, Francis AA, Murray NR (2014) Complex role for the immune system in initiation and progression of pancreatic cancer. World J Gastroenterol 20:11160–11181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lutz ER, Wu AA, Bigelow E et al (2014) Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2:616–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhan HX, Zhou B, Cheng YG et al (2017) Crosstalk between stromal cells and cancer cells in pancreatic cancer: new insights into stromal biology. Cancer Lett 392:83–93

    Article  CAS  PubMed  Google Scholar 

  63. Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    Article  CAS  PubMed  Google Scholar 

  64. Pylayeva-Gupta Y, Lee KE, Hajdu CH et al (2012) Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21:836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sinha P, Clements VK, Bunt SK et al (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    Article  CAS  PubMed  Google Scholar 

  66. Liu C, Yu S, Kappes J et al (2007) Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109:4336–4342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gabitass RF, Annels NE, Stocken DD et al (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stromnes IM, Brockenbrough JS, Izeradjene K et al (2014) Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 63:1769–1781

    Article  CAS  PubMed  Google Scholar 

  69. Khaled YS, Ammori BJ, Elkord E (2014) Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients. J Immunol Res 2014:879897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Menen RS, Hassanein MK, Momiyama M et al (2012) Tumor-educated macrophages promote tumor growth and peritoneal metastasis in an orthotopic nude mouse model of human pancreatic cancer. In Vivo 26:565–569

    PubMed  Google Scholar 

  71. Karnevi E, Andersson R, Rosendahl AH (2014) Tumour-educated macrophages display a mixed polarisation and enhance pancreatic cancer cell invasion. Immunol Cell Biol 92:543–552

    Article  CAS  PubMed  Google Scholar 

  72. Hu H, Jiao F, Han T et al (2015) Functional significance of macrophages in pancreatic cancer biology. Tumour Biol 36:9119–9126

    Article  CAS  PubMed  Google Scholar 

  73. Liu CY, Xu JY, Shi XY et al (2013) M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig 93:844–854

    Article  CAS  PubMed  Google Scholar 

  74. Kurahara H, Shinchi H, Mataki Y et al (2011) Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 167:e211–e219

    Article  PubMed  Google Scholar 

  75. Kurahara H, Takao S, Maemura K et al (2013) M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas 42:155–159

    Article  CAS  PubMed  Google Scholar 

  76. Mitchem JB, Brennan DJ, Knolhoff BL et al (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 73:1128–1141

    Article  CAS  PubMed  Google Scholar 

  77. Sanford DE, Belt BA, Panni RZ et al (2013) Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res 19:3404–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dineen SP, Lynn KD, Holloway SE et al (2008) Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res 68:4340–4346

    Article  CAS  PubMed  Google Scholar 

  79. Lianyuan T, Dianrong X, Chunhui Y et al (2018) The predictive value and role of stromal tumor-infiltrating lymphocytes in pancreatic ductal adenocarcinoma (PDAC). Cancer Biol Ther 19:296–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bang S, Kim HS, Choo YS et al (2006) Differences in immune cells engaged in cell-mediated immunity after chemotherapy for far advanced pancreatic cancer. Pancreas 32:29–36

    Article  PubMed  Google Scholar 

  81. Xu YF, Lu Y, Cheng H et al (2014) Abnormal distribution of peripheral lymphocyte subsets induced by PDAC modulates overall survival. Pancreatology 14:295–301

    Article  CAS  PubMed  Google Scholar 

  82. Helm O, Mennrich R, Petrick D et al (2014) Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS One 9:e94357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hiraoka N, Onozato K, Kosuge T et al (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434

    Article  CAS  PubMed  Google Scholar 

  84. Fukunaga A, Miyamoto M, Cho Y et al (2004) CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28:e26–e31

    Article  PubMed  Google Scholar 

  85. Lohneis P, Sinn M, Bischoff S et al (2017) Cytotoxic tumour-infiltrating T lymphocytes influence outcome in resected pancreatic ductal adenocarcinoma. Eur J Cancer 83:290–301

    Article  CAS  PubMed  Google Scholar 

  86. Ryschich E, Notzel T, Hinz U et al (2005) Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin Cancer Res 11:498–504

    CAS  PubMed  Google Scholar 

  87. Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380

    Article  CAS  PubMed  Google Scholar 

  88. Ellermeier J, Wei J, Duewell P et al (2013) Therapeutic efficacy of bifunctional siRNA combining TGF-beta1 silencing with RIG-I activation in pancreatic cancer. Cancer Res 73:1709–1720

    Article  CAS  PubMed  Google Scholar 

  89. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  90. Soares KC, Rucki AA, Wu AA et al (2015) PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother 38:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ino Y, Yamazaki-Itoh R, Shimada K et al (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108:914–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bellone G, Turletti A, Artusio E et al (1999) Tumor-associated transforming growth factor-beta and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol 155:537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tassi E, Braga M, Longhi R et al (2009) Non-redundant role for IL-12 and IL-27 in modulating Th2 polarization of carcinoembryonic antigen specific CD4 T cells from pancreatic cancer patients. PLoS One 4:e7234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yamamoto T, Yanagimoto H, Satoi S et al (2012) Circulating CD4+CD25+ regulatory T cells in patients with pancreatic cancer. Pancreas 41:409–415

    Article  CAS  PubMed  Google Scholar 

  95. Cheng H, Luo G, Lu Y et al (2016) The combination of systemic inflammation-based marker NLR and circulating regulatory T cells predicts the prognosis of resectable pancreatic cancer patients. Pancreatology 16:1080–1084

    Article  CAS  PubMed  Google Scholar 

  96. Tan MC, Goedegebuure PS, Belt BA et al (2009) Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182:1746–1755

    Article  CAS  PubMed  Google Scholar 

  97. Liyanage UK, Goedegebuure PS, Moore TT et al (2006) Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma. J Immunother 29:416–424

    Article  PubMed  Google Scholar 

  98. Royal RE, Levy C, Turner K et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33:828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Viehl CT, Moore TT, Liyanage UK et al (2006) Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann Surg Oncol 13:1252–1258

    Article  PubMed  Google Scholar 

  100. Liebig C, Ayala G, Wilks JA et al (2009) Perineural invasion in cancer: a review of the literature. Cancer 115:3379–3391

    Article  CAS  PubMed  Google Scholar 

  101. Demir IE, Ceyhan GO, Liebl F et al (2010) Neural invasion in pancreatic cancer: the past, present and future. Cancers (Basel) 2:1513–1527

    Article  CAS  Google Scholar 

  102. Hirai I, Kimura W, Ozawa K et al (2002) Perineural invasion in pancreatic cancer. Pancreas 24:15–25

    Article  PubMed  Google Scholar 

  103. Ceyhan GO, Bergmann F, Kadihasanoglu M et al (2009) Pancreatic neuropathy and neuropathic pain--a comprehensive pathomorphological study of 546 cases. Gastroenterology 136:177–186. e1

    Article  PubMed  Google Scholar 

  104. Saloman JL, Albers KM, Rhim AD et al (2016) Can stopping nerves, Stop Cancer? Trends Neurosci 39:880–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saloman JL, Singhi AD, Hartman DJ et al (2018) Systemic depletion of nerve growth factor inhibits disease progression in a genetically engineered model of pancreatic ductal adenocarcinoma. Pancreas 47:856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schwartz ES, Christianson JA, Chen X et al (2011) Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology 140:1283–1291 e1–2

    Article  CAS  PubMed  Google Scholar 

  107. Schwartz ES, La JH, Scheff NN et al (2013) TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J Neurosci 33:5603–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Deborde S, Wong RJ (2017) How Schwann cells facilitate cancer progression in nerves. Cell Mol Life Sci 74:4405–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Demir IE, Boldis A, Pfitzinger PL et al (2014) Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J Natl Cancer Inst 106

    Google Scholar 

  110. Deborde S, Omelchenko T, Lyubchik A et al (2016) Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 126:1538–1554

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bressy C, Lac S, Nigri J et al (2018) LIF drives neural remodeling in pancreatic Cancer and offers a new candidate biomarker. Cancer Res 78:909–921

    Article  CAS  PubMed  Google Scholar 

  112. Nicola NA, Babon JJ (2015) Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev 26:533–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Voelker R (2016) Liquid biopsy receives approval. JAMA 316:260

    Google Scholar 

  114. Ting DT, Wittner BS, Ligorio M et al (2014) Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8:1905–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chang MC, Chang YT, Chen JY et al (2016) Clinical significance of circulating tumor microemboli as a prognostic marker in patients with pancreatic ductal adenocarcinoma. Clin Chem 62:505–513

    Article  CAS  PubMed  Google Scholar 

  116. Maddipati R, Stanger BZ (2015) Pancreatic Cancer Metastases Harbor evidence of Polyclonality. Cancer Discov 5:1086–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Samandari M, Julia MG, Rice A et al (2018) Liquid biopsies for management of pancreatic cancer. Transl Res 201:98–127

    Article  PubMed  Google Scholar 

  118. Qi ZH, Xu HX, Zhang SR et al (2018) The significance of liquid biopsy in pancreatic Cancer. J Cancer 9:3417–3426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Harada T, Yamamoto H, Kishida S et al (2017) Wnt5b-associated exosomes promote cancer cell migration and proliferation. Cancer Sci 108:42–52

    Article  CAS  PubMed  Google Scholar 

  120. Mikamori M, Yamada D, Eguchi H et al (2017) MicroRNA-155 controls exosome synthesis and promotes gemcitabine resistance in pancreatic ductal adenocarcinoma. Sci Rep 7:42339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hoshino A, Costa-Silva B, Shen TL et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yamaguchi Y, Watanabe H, Yrdiran S et al (1999) Detection of mutations of p53 tumor suppressor gene in pancreatic juice and its application to diagnosis of patients with pancreatic cancer: comparison with K-ras mutation. Clin Cancer Res 5:1147–1153

    CAS  PubMed  Google Scholar 

  123. Whatcott CJ, Han H, Von Hoff DD (2015) Orchestrating the tumor microenvironment to improve survival for patients with pancreatic Cancer: normalization, not destruction. Cancer J 21:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ozdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Peske JD, Woods AB, Engelhard VH (2015) Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment. Adv Cancer Res 128:263–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stromnes IM, Hulbert A, Pierce RH et al (2017) T-cell localization, activation, and clonal expansion in human pancreatic ductal adenocarcinoma. Cancer Immunol Res 5:978–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, K., He, H. (2020). Pancreatic Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1296. Springer, Cham. https://doi.org/10.1007/978-3-030-59038-3_15

Download citation

Publish with us

Policies and ethics