Skip to main content

Simulated Diffusion Weighted Images Based on Model-Predicted Tumor Growth

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2020)

Abstract

Non-invasive magnetic resonance imaging (MRI) is the primary imaging modality for visualizing brain tumor growth and treatment response. While standard MRIs are central to clinical decision making, advanced quantitative imaging sequences like diffusion weighted imaging (DWI) are increasingly relied on. Deciding the best way to interpret DWIs, particularly in the context of treatment, is still an area of intense research. With DWI being indicative of tissue structure, it is important to establish the link between DWI and brain tumor mathematical growth models, which could help researchers and clinicians better understand the tumor’s microenvironmental landscape. Our goal was to demonstrate the potential for creating a DWI patient-specific untreated virtual imaging control (UVICs), which represents an individual tumor’s untreated growth and could be compared with actual patient DWIs. We generated a DWI UVIC by combining a patient-specific mathematical model of tumor growth with a multi-compartmental MRI signal equation. GBM growth was mathematically modeled using the Proliferation-Invasion-Hypoxia-Necrosis-Angiogenesis-Edema (PIHNA-E) model, which simulated tumor as being comprised of multiple cellular phenotypes interacting with vasculature, angiogenic factors, and extracellular fluid. The model’s output consisted of spatial volume fraction maps for each microenvironmental species. The volume fraction maps and corresponding T2 and apparent diffusion coefficient (ADC) values from literature were incorporated into a multi-compartmental signal equation to simulate DWI images. Simulated DWIs were created at multiple b-values and then used to calculate ADC maps. We found that the regional ADC values of simulated tumors were comparable to literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stupp, R., et al.: European organisation for research and treatment of cancer brain tumor and radiotherapy groups, national cancer institute of canada clinical trials group: radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005)

    Article  Google Scholar 

  2. Clarke, J.L., Chang, S.M.: Neuroimaging: diagnosis and response assessment in glioblastoma. Cancer J. 18, 26–31 (2012)

    Article  Google Scholar 

  3. Schmainda, K.M.: Diffusion-weighted MRI as a biomarker for treatment response in glioma (2012). https://doi.org/10.2217/cns.12.25

  4. Sugahara, T., et al.: Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging 9, 53–60 (1999)

    Article  Google Scholar 

  5. Ellingson, B.M., et al.: Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J. Magn. Reson. Imaging 31, 538–548 (2010)

    Article  Google Scholar 

  6. Gupta, R.K., et al.: Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J. Neurooncol. 50, 215–226 (2000). https://doi.org/10.1023/A:1006431120031

    Article  Google Scholar 

  7. Eidel, O., et al.: Automatic analysis of cellularity in glioblastoma and correlation with ADC using trajectory analysis and automatic nuclei counting. PLoS ONE 11, e0160250 (2016)

    Article  Google Scholar 

  8. Le Bihan, D., Iima, M.: Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLoS Biol. 13, e1002203 (2015)

    Article  Google Scholar 

  9. Neher, P.F., Laun, F.B., Stieltjes, B., Maier-Hein, K.H.: Fiberfox: facilitating the creation of realistic white matter software phantoms. Magn. Reson. Med. 72, 1460–1470 (2014)

    Article  Google Scholar 

  10. Perrone, D., et al.: D-BRAIN: anatomically accurate simulated diffusion MRI brain data. PLoS ONE 11, e0149778 (2016)

    Article  Google Scholar 

  11. Close, T.G., Tournier, J.-D., Calamante, F., Johnston, L.A., Mareels, I., Connelly, A.: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. Neuroimage 47, 1288–1300 (2009)

    Article  Google Scholar 

  12. Harkins, K.D., Galons, J.-P., Secomb, T.W., Trouard, T.P.: Assessment of the effects of cellular tissue properties on ADC measurements by numerical simulation of water diffusion (2009). https://doi.org/10.1002/mrm.22155

  13. Yeh, C.-H., Schmitt, B., Le Bihan, D., Li-Schlittgen, J.-R., Lin, C.-P., Poupon, C.: Diffusion microscopist simulator: a general Monte Carlo simulation system for diffusion magnetic resonance imaging. PLoS ONE 8, e76626 (2013)

    Article  Google Scholar 

  14. Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for evaluation of segmentation efficacy. Med. Image Anal. 13, 297–311 (2009)

    Article  Google Scholar 

  15. Jackson, P.R., Hawkins-Daarud, A., Partridge, S.C., Kinahan, P.E., Swanson, K.R.: Simulating magnetic resonance images based on a model of tumor growth incorporating microenvironment. In: Medical Imaging 2018: Image Perception, Observer Performance, and Technology Assessment, p. 105771D (2018)

    Google Scholar 

  16. Le Bihan, D., Johansen-Berg, H.: Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 61, 324–341 (2012)

    Article  Google Scholar 

  17. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient (1965). https://doi.org/10.1063/1.1695690

  18. Hawkins-Daarud, A., Rockne, R.C., Anderson, A.R.A., Swanson, K.R.: Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front. Oncol. 3, 66 (2013)

    Article  Google Scholar 

  19. Collins, D.L., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17, 463–468 (1998)

    Article  Google Scholar 

  20. BrainWeb: Simulated brain database. http://www.bic.mni.mcgill.ca/brainweb/. Accessed 28 June 2020

  21. Nicholson, C., Syková, E.: Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215 (1998)

    Article  Google Scholar 

  22. Xiao, F., Nicholson, C., Hrabe, J., Hrabetová, S.: Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging. Biophys. J. 95, 1382–1392 (2008)

    Article  Google Scholar 

  23. Vargová, L., Homola, A., Zámecník, J., Tichý, M., Benes, V., Syková, E.: Diffusion parameters of the extracellular space in human gliomas. Glia 42, 77–88 (2003)

    Article  Google Scholar 

  24. Bruehlmeier, M., et al.: Measurement of the extracellular space in brain tumors using 76Br-bromide and PET. J. Nucl. Med. 44, 1210–1218 (2003)

    Google Scholar 

  25. Hahn, E.L.: Spin echoes (1950). https://doi.org/10.1063/1.3066708

  26. Smouha, E., Neeman, M.: Compartmentation of intracellular water in multicellular tumor spheroids: diffusion and relaxation NMR. Magn. Reson. Med. 46, 68–77 (2001)

    Article  Google Scholar 

  27. Clark, C.A., Hedehus, M., Moseley, M.E.: In vivo mapping of the fast and slow diffusion tensors in human brain. Magn. Reson. Med. 47, 623–628 (2002)

    Article  Google Scholar 

  28. Maier, S.E., Mulkern, R.V.: Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn. Reson. Imaging 26, 897–904 (2008)

    Article  Google Scholar 

  29. Brown, R.W., Mark Haacke, E.-C., Norman Cheng, Y., Thompson, M.R., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, Hoboken (2014)

    Book  Google Scholar 

  30. Krishnamurthy, L.C., Liu, P., Ge, Y., Lu, H.: Vessel-specific quantification of blood oxygenation with T2-relaxation-under-phase-contrast MRI. Magn. Reson. Med. 71, 978–989 (2014)

    Article  Google Scholar 

  31. Oh, J., et al.: Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J. Magn. Reson. Imaging 21, 701–708 (2005)

    Article  Google Scholar 

  32. Salan, T., Jacobs, E.L., Reddick, W.E.: A 3D model-based simulation of demyelination to understand its effects on diffusion tensor imaging. In: Conference Proceedings of IEEE Engineering Medical Biology Society, pp. 3525–3528 (2017)

    Google Scholar 

  33. Hu, L.S., et al.: Accurate patient-specific machine learning models of glioblastoma invasion using transfer learning (2019). https://doi.org/10.3174/ajnr.a5981

Download references

Acknowledgements

The authors would like to thank Drs. Savannah C. Partridge and Paul E. Kinahan for many helpful discussions. Further, we acknowledge the following funding sources that made our work possible: John M. Nasseff, Sr. Career Development Award in Neurologic Surgery Research, Moffitt PSOC U54CA193489, Diversity Supplement 3U54CA193489-04S3, Mayo U01 U01CA220378, and MIT PSOC U54CA210180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela R. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jackson, P.R., Hawkins-Daarud, A., Swanson, K.R. (2020). Simulated Diffusion Weighted Images Based on Model-Predicted Tumor Growth. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2020. Lecture Notes in Computer Science(), vol 12417. Springer, Cham. https://doi.org/10.1007/978-3-030-59520-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59520-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59519-7

  • Online ISBN: 978-3-030-59520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics