Skip to main content

A Review of Virtual Reality-Based Eye Examination Simulators

  • Chapter
  • First Online:
Recent Advances in Technologies for Inclusive Well-Being

Abstract

Eye fundus examination requires extensive practice to enable the adequate interpretation of the anatomy observed as a flat image seen through the ophthalmoscope, which is a handheld device that allows for the non-invasive examination of the back of the eye. Mastering eye examination with an ophthalmoscope is difficult due to the intricate volumetric anatomy of the eye when seen as a two-dimensional image when examined through the lens of an1 ophthalmoscope. The lack of eye examination skills in medical practitioners is a cause of concern in today’s medical practise as misdiagnosis can result in improper or prompt treatment of life-threatening conditions such as glaucoma, high blood pressure, or diabetes amongst others. Past and current solutions to the problem of ophthalmoscope education have seen the use of pictures, illustrations, videos, cadavers, patients, and volunteers. More recently, simulation has provided a higher-end instrument to expose trainees to otherwise impossible conditions for learning purposes safely. However, simulation costs associated with purchasing and maintaining modern simulators has lead to complications related to their acquisition and availability. These shortcomings in eye examination simulation have led to research focusing on cost-effective tools using a breadth of solutions involving physical and digital simulators ranging from mobile applications to virtual and augmented reality, to makerspace and practical eye models. In this chapter, we review direct ophthalmoscopy simulation models for medical training. We highlight the characteristics, limitations, and advantages presented by modern simulation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fisher, J., Viscusi, R., Ratesic, A., Johnstone, C., Kelley, R., Tegethoff, A.M., Bates, J., Situ-Lacasse, E.H., Adamas-Rappaport, W.J., Amini, R.: Clinical skills temporal degradation assessment in undergraduate medical education. J. Adv. Med. Educ. Prof. 6(1), 1–5 (2018)

    Google Scholar 

  2. Cook, D.A., Andersen, D.K., Combes, J.R., Feldman, D.L., Sachdeva, A.K.: The value proposition of simulation-based education. Surgery 163(4), 944–949 (2018)

    Article  Google Scholar 

  3. Shah, S.: Ophthalmology in ancient time—The Sushruta Samhita. J. Clin. Ophthalmol. Res. 6(3), 117–120 (2018)

    Article  Google Scholar 

  4. Ma, K.W.: Acupuncture: its place in the history of Chinese medicine. Acupuncture Med. 18(2), 88–99 (2000)

    Article  Google Scholar 

  5. White, A., Ernst, E.: A brief history of acupuncture. Rheumatology 43(5), 662–663 (2004)

    Article  Google Scholar 

  6. Owen, H.: Simulation in Healthcare Education: An Extensive History. Springer, Cham, Switzerland (2016)

    Book  Google Scholar 

  7. Pavlovic, A., Kalezic, N., Trpkovic, S., Videnovic, N., Sulovic, L.: The application of simulation in medical education—Our experience “From Improvisation to Simulation”. Srpski arhiv za celokupno lekarstvo 146(5–6), 338–344 (2017)

    Google Scholar 

  8. Kelly, L.P., Garza, P.S., Bruce, B.B., Graubart, E.B., Newman, N.J., Biousse, V.: Teaching ophthalmoscopy to medical students (the TOTeMS study). Ame. J. Ophthalmol. 156(5), 1056–1061 (2013)

    Article  Google Scholar 

  9. Bruce, B.B., Thulasi, P., Fraser, C.L., Keadey, M.T., Ward, A., Heilpern, K.L., Wright, D.W., Newman, N.J., Biousse, V.: Diagnostic accuracy and use of nonmydriatic ocular fundus photography by emergency physicians: Phase II of the FOTO-ED study. Ann. Emerg. Med. 62(1), 28–33 (2013)

    Article  Google Scholar 

  10. Schulz, C., Moore, J., Tamsett, E., Smith, C.: Addressing the ‘Forgotten Art of Fundoscopy’: evaluation of a novel teaching ophthalmoscope. Eye 30(3), 375–384 (2015)

    Google Scholar 

  11. Yusuf, I., Salmon, J., Patel, C.: Direct Ophthalmoscopy should be taught to undergraduate medical students—Yes. Eye 29(8), 987 (2015)

    Article  Google Scholar 

  12. van Velden, J.S., Cook, C., du Toit, N., Myer, L.: Primary health eye care: evaluation of the competence of medical students in performing fundoscopy with the direct ophthalmoscope. S. Afr. Fam. Pract. 52(4), 341–343 (2010)

    Article  Google Scholar 

  13. Benbassat, J., Polak, B.C., Javitt, J.C.: Objectives of teaching direct ophthalmoscopy to medical students. Acta Ophthalmologica 90(6), 503–507 (2012)

    Article  Google Scholar 

  14. Nguyen, M., Quevedo-Uribe, A., Kapralos, B., Jenkin, M., Kanev, K., Jaimes, N.: An experimental training support framework for eye fundus examination skill development. Comput. Methods Biomech. Biomed. Eng. Imag. Vis. 7(1), 26–36 (2019)

    Article  Google Scholar 

  15. Bruce, B.B., Bidot, S., Hage, R., Clough, L.C., Fajoles-Vasseneix, C., Melomed, M., Keadey, M.T., Wright, D.W., Newman, N.J., Biousse, V.: Fundus photography versus ophthalmoscopy outcomes in the emergency department (FOTO-ED) phase III: web-based, in-service training of emergency providers. Neuro-Ophthalmology 42(5), 269–274 (2018)

    Article  Google Scholar 

  16. Lamirel, C., Bruce, B.B., Wright, D.W., Delaney, K.P.: Quality of nonmydriatic digital fundus photography obtained by nurse practitioners in the emergency department : The FOTO-ED study. OPHTHA 119(3), 617–624 (2011)

    Article  Google Scholar 

  17. Imonikhe, R.J., Finer, N., Gallagher, K., Plant, G., Bremner, F.D., Acheson, J.F.: Direct ophthalmoscopy should be tto undergraduate medical atudents—Yes. Eye (Basingstoke) 30(3), 497 (2016)

    Google Scholar 

  18. Stainer, M.J., Anderson, A.J., Denniss, J.: Examination strategies of experienced and novice clinicians viewing the retina. Ophthal. Physiol. Opt. 35(4), 424–432 (2015)

    Article  Google Scholar 

  19. Roux, P.: Ophthalmoscopy for the general practitioner. S. Afr. Fam. Pract. 46(5), 10–14 (2004)

    Article  Google Scholar 

  20. Parthasarathy, M.K., Faruq, I., Arthurs, E., Lakshminarayanan, V.: Comparison between the arclight ophthalmoscope and a standard handheld direct ophthalmoscope: a clinical study. In: Current Developments in Lens Design and Optical Engineering XIX, vol. 10745, p. 107450V. International Society for Optics and Photonics, San Diego, CA, USA (2018)

    Google Scholar 

  21. Lowe, J., Cleland, C.R., Mgaya, E., Furahini, G., Gilbert, C.E., Burton, M.J., Philippin, H.: The arclight ophthalmoscope: a reliable low-cost alternative to the standard direct ophthalmoscope. J. Ophthalmol. 2015, 1–6 (2015)

    Article  Google Scholar 

  22. Mamtora, S., Sandinha, M.T., Ajith, A., Song, A., Steel, D.H.: Smart phone ophthalmoscopy: a potential replacement for the direct ophthalmoscope. Eye 32(11), 1766 (2018)

    Article  Google Scholar 

  23. Nguyen, M., Quevedo-Uribe, A., Kapralos, B., Jenkin, M., Kanev, K., Jaimes, N.: An experimental training support framework for eye fundus examination skill development. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 7(1), 26–36 (2017)

    Article  Google Scholar 

  24. Datta, R., Upadhyay, K.K., Jaideep, C.N.: Simulation and its role in medical education. Med. J. Armed Forces India 68(2), 167–172 (2012)

    Article  Google Scholar 

  25. Bradley, P.: The history of simulation in medical education and possible future directions. Med. Educ. 40(3), 254–262 (2006)

    Article  Google Scholar 

  26. Sharma, M., Horgan, A.: Comparison of fresh-frozen cadaver and high-fidelity virtual reality simulator as methods of laparoscopic training. World J. Surg. 36(8), 1732–1737 (2012)

    Article  Google Scholar 

  27. Rosen, K.R.: The history of medical simulation. J. Crit. Care 23(2), 157–166 (2008)

    Article  Google Scholar 

  28. Ott, T., Schmidtmann, I., Limbach, T., Gottschling, P., Buggenhagen, H., Kurz, S., Pestel, G.: Simulation-based training and OR apprenticeship for medical students: a prospective, randomized, single-blind study of clinical skills. Der Anaesthesist 65(11), 822–831 (2016)

    Article  Google Scholar 

  29. Alinier, G.: Developing high-fidelity health care simulation scenarios: a guide for educators and professionals. Simul. Gaming 42(1), 9–26 (2011)

    Article  Google Scholar 

  30. So, H.Y., Chen, P.P., Wong, G.K.C., Chan, T.T.N.: Simulation in medical education. J. R. Coll. Phys. Edinburgh 49(1), 52–57 (2019)

    Article  Google Scholar 

  31. Beal, M.D., Kinnear, J., Anderson, C.R., Martin, T.D., Wamboldt, R., Hooper, L.: The effectiveness of medical simulation in teaching medical students critical care medicine: a systematic review and meta-analysis. Simul. Healthcare 12(2), 104–116 (2017)

    Article  Google Scholar 

  32. Lind, B.: The birth of the resuscitation Mannequin, Resusci Anne, and the teaching of mouth-to-mouth ventilation. Acta Anaesthesiologica Scandinavica 51(8), 1051–1053 (2007)

    Article  Google Scholar 

  33. Jones, F., Passos-Neto, C.E., Braghiroli, O.F.M.: Simulation in medical education: brief history and methodology. Principles Pract. Clin. Res. 1(2), 1–8 (2015)

    Google Scholar 

  34. Abrahamson, S., Denson, J.S., Wolf, R.: Effectiveness of a simulator in training anesthesiology residents. BMJ Qual. Saf. 13(5), 395–397 (2004)

    Article  Google Scholar 

  35. Fritz, P.Z., Gray, T., Flanagan, B.: Review of Mannequin-based high-fidelity simulation in emergency medicine. Emerg. Med. Austral. 20(1), 1–9 (2008)

    Article  Google Scholar 

  36. Dotger, B.H., Dotger, S.C., Maher, M.J.: From medicine to teaching: the evolution of the simulated interaction model. Innov. Higher Educ. 35(3), 129–141 (2010)

    Article  Google Scholar 

  37. Barrows, H.: An overview of the uses of standardized patients for teaching and evaluating clinical skills. Acad. Med. Philadelphia 68, 443–443 (1993)

    Article  Google Scholar 

  38. Cooper, J.B., Taqueti, V.R.: A brief history of the development of Mannequin simulators for clinical education and training. Postgr. Med. J. 84(997), 563–570 (2008)

    Article  Google Scholar 

  39. Maran, N.J., Glavin, R.J.: Low-to high-fidelity simulation—A continuum of medical education? Med. Educ. Suppl. 37(1), 22–28 (2003)

    Article  Google Scholar 

  40. Perry, S., Burrow, M., Leung, W., Bridges, S.: Simulation and curriculum design: A global survey in dental education. Austr. Dental J. 62(4), 453–463 (2017)

    Article  Google Scholar 

  41. Scalese, R.J., Obeso, V.T., Issenberg, S.B.: Simulation technology for skills training and competency assessment in medical education. J. Gen. Internal Med. 23(1), 46–49 (2008)

    Article  Google Scholar 

  42. Munshi, F., Lababidi, H., Alyousef, S.: Low-versus high-fidelity simulations in teaching and assessing clinical skills. J. Taibah Univ. Med. Sci. 10(1), 12–15 (2015)

    Google Scholar 

  43. Howard, M.C., Gutworth, M.B.: A meta-analysis of virtual reality training programs for social skill development. Comput. Educ. 144, 103707 (2020)

    Google Scholar 

  44. Akçayir, M., Akçayir, G.: Advantages and challenges associated with augmented reality for education: a systematic review of the literature. Educ. Res. Rev. 20, 1–11 (2017)

    Article  Google Scholar 

  45. Chiang, T.H., Yang, S.J., Hwang, G.J.: Students’ online interactive patterns in augmented reality-based inquiry activities. Comput. Educ. 78, 97–108 (2014)

    Article  Google Scholar 

  46. Cheng, K.H., Tsai, C.C.: Affordances of augmented reality in science learning: suggestions for future research. J. Sci. Educ. Technol. 22(4), 449–462 (2013)

    Article  Google Scholar 

  47. Dunleavy, M., Dede, C., Mitchell, R.: Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. J. Sci. Educ. Technol. 18(1), 7–22 (2009)

    Article  Google Scholar 

  48. Ricci, L.H., Ferraz, C.A.: Ophthalmoscopy simulation: advances in training and practice for medical students and Young ophthalmologists. Adv. Med. Educ. Pract. 8, 435 (2017)

    Article  Google Scholar 

  49. Acosta, D., Gu, D., Uribe-Quevedo, A., Kanev, K., Jenkin, M., Kapralos, B., Jaimes, N.: Mobile e-training tools for augmented reality eye fundus examination. In: Interactive Mobile Communication. Technologies and Learning, pp. 83–92. Springer, Hamilton, ON, Canada (2018)

    Google Scholar 

  50. Chung, K.D., Watzke, R.C.: A simple device for teaching direct ophthalmoscopy to primary care practitioners. Am. J. Ophthalmol. 138(3), 501–502 (2004)

    Article  Google Scholar 

  51. Ricci, L.H., Ferraz, C.A.: Simulation models applied to practical learning and skill enhancement in direct and indirect ophthalmoscopy: a review. Arquivos Brasileiros de Oftalmologia 77(5), 334–338 (2014)

    Article  Google Scholar 

  52. Kelly, L.P., MacKay, D.D., Garza, P.S., Bruce, B.B., Bidot, S., Graubart, E.B., Newman, N.J., Biousse, V.: Teaching ophthalmoscopy to medical students (TOTeMS) II : a one-year retention study. Am. J. Ophthalmol. 157(3), 747–749 (2014)

    Article  Google Scholar 

  53. Androwiki, J.E., Scravoni, I.A., Ricci, L.H., Fagundes, D.J., Ferraz, C.A.: Evaluation of a simulation tool in ophthalmology: application in teaching funduscopy. Arquivos Brasileiros de Oftalmologia 78(1), 36–39 (2015)

    Article  Google Scholar 

  54. Danielle, M., McCarthy Heather, R., Leonard, J.A.V.: A new tool for testing and training ophthalmosopic skills. J. Grad. Med. Edu. 4(1), 92–96 (2012)

    Google Scholar 

  55. Larsen, P., Stoddart, H., Griess, M.: Ophthalmoscopy using an eye simulator model. Clin. Teacher 11(2), 99–103 (2014)

    Article  Google Scholar 

  56. Wilson, A.S., O’Connor, J., Taylor, L., Carruthers, D.: A 3D virtual reality ophthalmoscopy trainer. Clin. Teacher 14(6), 427–431 (2017)

    Article  Google Scholar 

  57. Codd-Downey, R., Shewaga, R., Uribe-Quevedo, A., Kapralos, B., Kanev, K., Jenkin, M.: A novel tabletop and tablet-based display system to support learner-centric ophthalmic anatomy education. In: International Conference on Augmented Reality. Virtual Reality and Computer Graphics, pp. 3–12. Springer, Otranto, Italy (2016)

    Google Scholar 

  58. Soto, C., Vargas, M., Uribe-Quevedo, A., Jaimes, N., Kapralos, B.: AR stereoscopic 3D human eye examination app. In: 2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL), pp. 236–238. IEEE, Thessaloniki, Greece (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Uribe-Quevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, M., Uribe-Quevedo, A., Kapralos, B., Jenkin, M., Kanev, K., Jaimes, N. (2021). A Review of Virtual Reality-Based Eye Examination Simulators. In: Brooks, A.L., Brahman, S., Kapralos, B., Nakajima, A., Tyerman, J., Jain, L.C. (eds) Recent Advances in Technologies for Inclusive Well-Being. Intelligent Systems Reference Library, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-59608-8_6

Download citation

Publish with us

Policies and ethics