Skip to main content

JBFnet - Low Dose CT Denoising by Trainable Joint Bilateral Filtering

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Deep neural networks have shown great success in low dose CT denoising. However, most of these deep neural networks have several hundred thousand trainable parameters. This, combined with the inherent non-linearity of the neural network, makes the deep neural network difficult to understand with low accountability. In this study we introduce JBFnet, a neural network for low dose CT denoising. The architecture of JBFnet implements iterative bilateral filtering. The filter functions of the Joint Bilateral Filter (JBF) are learned via shallow convolutional networks. The guidance image is estimated by a deep neural network. JBFnet is split into four filtering blocks, each of which performs Joint Bilateral Filtering. Each JBF block consists of 112 trainable parameters, making the noise removal process comprehendable. The Noise Map (NM) is added after filtering to preserve high level features. We train JBFnet with the data from the body scans of 10 patients, and test it on the AAPM low dose CT Grand Challenge dataset. We compare JBFnet with state-of-the-art deep learning networks. JBFnet outperforms CPCE3D, GAN and deep GFnet on the test dataset in terms of noise removal while preserving structures. We conduct several ablation studies to test the performance of our network architecture and training method. Our current setup achieves the best performance, while still maintaining behavioural accountability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angel, E.: AIDR 3D iterative reconstruction: integrated, automated and adaptive dose reduction (2012). https://us.medical.canon/download/aidr-3d-wp-aidr-3d

  2. Fan, F., et al.: Quadratic autoencoder (Q-AE) for low-dose CT denoising. IEEE Trans. Med. Imaging (2019). https://doi.org/10.1109/tmi.2019.2963248

    Article  Google Scholar 

  3. Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36(1), 105–117 (1972). https://doi.org/10.1016/0022-5193(72)90180-4

    Article  Google Scholar 

  4. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning (2014). https://doi.org/10.1016/B978-0-12-801775-3.00001-9

    Article  Google Scholar 

  5. Hounsfield, G.N.: Computerized transverse axial scanning (tomography). Br. J. Radiol. 46(552), 1016–1022 (1973). https://doi.org/10.1259/0007-1285-46-552-1016

    Article  Google Scholar 

  6. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin International de l’Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques 35, 355–357 (1937)

    Google Scholar 

  7. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  8. Li, M., Hsu, W., Xie, X., Cong, J., Gao, W.: SACNN: self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans. Med. Imaging (2020). https://doi.org/10.1109/TMI.2020.2968472

    Article  Google Scholar 

  9. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: International Conference on Machine Learning, vol. 30, p. 6 (2013)

    Google Scholar 

  10. Maier, A., Fahrig, R.: GPU denoising for computed tomography. In: Xun, J., Jiang, S. (eds.) Graphics Processing Unit-Based High Performance Computing in Radiation Therapy, 1 edn., pp. 113–128. CRC Press, Boca Raton (2015)

    Google Scholar 

  11. Maier, A., et al.: Precision learning: towards use of known operators in neural networks. In: Proceedings of the International Conference on Pattern Recognition, No. 2, pp. 183–188 (2018). https://doi.org/10.1109/ICPR.2018.8545553

  12. Maier, A.K., et al.: Learning with known operators reduces maximum error bounds. Nature Mach. Intell. 1(8), 373–380 (2019). https://doi.org/10.1038/s42256-019-0077-5

    Article  Google Scholar 

  13. Manduca, A., et al.: Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med. Phys. 36(11), 4911–4919 (2009). https://doi.org/10.1118/1.3232004

    Article  MathSciNet  Google Scholar 

  14. Manhart, M., Fahrig, R., Hornegger, J., Doerfler, A., Maier, A.: Guided noise reduction for spectral CT with energy-selective photon counting detectors. In: Proceedings of the Third CT Meeting, No. 1, pp. 91–94 (2014)

    Google Scholar 

  15. Mccollough, C.H.: Low Dose CT Grand Challenge (2016)

    Google Scholar 

  16. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Medical Image Computing and Computer Assisted Intervention, vol. 3, pp. 417–425 (2017). https://doi.org/10.1007/978-3-319-66179-7

  17. Oppelt, A.: Noise in computed tomography. In: Aktiengesselschaft, S. (ed.) Imaging Systems for Medical Diagnostics, chap. 13.1.4.2, 2nd edn., p. 996. Publicis Corporate Publishing (2005). https://doi.org/10.1145/2505515.2507827

  18. Ramirez-Giraldo, J.C., Grant, K.L., Raupach, R.: ADMIRE: advanced modeled iterative reconstruction (2015). https://www.siemens-healthineers.com/computed-tomography/technologies-innovations/admire

  19. Shan, H., et al.: Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nature Mach. Intell. 1(6), 269–276 (2019). https://doi.org/10.1038/s42256-019-0057-9

    Article  Google Scholar 

  20. Shan, H., et al.: 3D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2D trained network. IEEE Trans. Med. Imaging 37(6), 1522–1534 (2018). https://doi.org/10.4172/2157-7633.1000305

    Article  Google Scholar 

  21. Syben, C., et al.: Precision learning: reconstruction filter kernel discretization. In: Proceedings of the 5th International Conference on Image Formation in X-ray Computed Tomography, Salt Lake City, pp. 386–390 (2017)

    Google Scholar 

  22. Wolterink, J.M., Dinkla, A.M., Savenije, M.H., Seevinck, P.R., van den Berg, C.A., Isgum, I.: Deep MR to CT synthesis using unpaired data. In: Workshop on Simulation and Synthesis in Medical Imaging, pp. 14–23 (2017). https://doi.org/10.1007/978-3-319-68127-6

  23. Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative l CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017). https://doi.org/10.1109/TMI.2017.2708987

    Article  Google Scholar 

  24. Wu, H., Zheng, S., Zhang, J., Huang, K.: Fast end-to-end trainable guided filter. In: Computer Vision and Pattern Recognition, pp. 1838–1847 (2018)

    Google Scholar 

  25. Yang, Q., et al.: Low-dose CT Image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018). https://doi.org/10.1109/TMI.2018.2827462

    Article  Google Scholar 

  26. Zhang, Y., et al.: Low-dose CT via convolutional neural network. Biomed. Opt. Express 8(2), 679–694 (2017). https://doi.org/10.1364/boe.8.000679

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Patwari .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 789 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patwari, M., Gutjahr, R., Raupach, R., Maier, A. (2020). JBFnet - Low Dose CT Denoising by Trainable Joint Bilateral Filtering. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics