Skip to main content

MR-to-US Registration Using Multiclass Segmentation of Hepatic Vasculature with a Reduced 3D U-Net

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Accurate hepatic vessel segmentation and registration using ultrasound (US) can contribute to beneficial navigation during hepatic surgery. However, it is challenging due to noise and speckle in US imaging and liver deformation. Therefore, a workflow is developed using a reduced 3D U-Net for segmentation, followed by non-rigid coherent point drift (CPD) registration. By means of electromagnetically tracked US, 61 3D volumes were acquired during surgery. Dice scores of 0.77, 0.65 and 0.66 were achieved for segmentation of all vasculature, hepatic vein and portal vein respectively. This compares to inter-observer variabilities of 0.85, 0.88 and 0.74 respectively. Target registration error at a tumor lesion of interest was lower (7.1 mm) when registration is performed either on the hepatic or the portal vein, compared to using all vasculature (8.9 mm). Using clinical data, we developed a workflow consisting of multi-class segmentation combined with selective non-rigid registration that leads to sufficient accuracy for integration in computer assisted liver surgery.

B. R. Thomson and J. N. Smit—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Askeland, C., et al.: CustusX: an open-source research platform for image-guided therapy. Int. J. Comput. Assist. Radiol. Surg. 11(4), 505–519 (2016)

    Article  Google Scholar 

  2. Bø, L.E., Hofstad, E.F., Lindseth, F., Hernes, T.A.: Versatile robotic probe calibration for position tracking in ultrasound imaging. Phys. Med. Biol. 60(9), 3499 (2015)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Dagon, B., Baur, C., Bettschart, V.: Real-time update of 3D deformable models for computer aided liver surgery. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  5. Fusaglia, M., Tinguely, P., Banz, V., Weber, S., Lu, H.: A novel ultrasound-based registration for image-guided laparoscopic liver ablation. Surg. Innov. 23(4), 397–406 (2016)

    Article  Google Scholar 

  6. Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)

    Article  Google Scholar 

  7. Guerrero, J., Salcudean, S.E., McEwen, J.A., Masri, B.A., Nicolaou, S.: Real-time vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans. Med. Imaging 26(8), 1079–1090 (2007)

    Article  Google Scholar 

  8. Ivashchenko, O.V., et al.: A workflow for automated segmentation of the liver surface, hepatic vasculature and biliary tree anatomy from multiphase MR images. Magn. Reson. Imaging 68, 53–65 (2020)

    Article  Google Scholar 

  9. Khallaghi, S.: Pure numpy implementation of the coherent point drift algorithm (2017). https://github.com/siavashk/pycpd

  10. Kumar, R.P., Albregtsen, F., Reimers, M., Edwin, B., Langø, T., Elle, O.J.: Three-dimensional blood vessel segmentation and centerline extraction based on two-dimensional cross-section analysis. Ann. Biomed. Eng. 43(5), 1223–1234 (2015)

    Article  Google Scholar 

  11. Lange, T., Eulenstein, S., Hünerbein, M., Lamecker, H., Schlag, P.-M.: Augmenting intraoperative 3D ultrasound with preoperative models for navigation in liver surgery. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 534–541. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30136-3_66

    Chapter  Google Scholar 

  12. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994)

    Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  14. Milko, S., Samset, E., Kadir, T.: Segmentation of the liver in ultrasound: a dynamic texture approach. Int. J. Comput. Assist. Radiol. Surg. 3(1–2), 143 (2008)

    Article  Google Scholar 

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  16. Mishra, D., Chaudhury, S., Sarkar, M., Manohar, S., Soin, A.S.: Segmentation of vascular regions in ultrasound images: a deep learning approach. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018)

    Google Scholar 

  17. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  18. Smistad, E., Elster, A.C., Lindseth, F.: GPU accelerated segmentation and centerline extraction of tubular structures from medical images. Int. J. Comput. Assist. Radiol. Surg. 9(4), 561–575 (2014)

    Article  Google Scholar 

  19. Song, Y., et al.: Locally rigid, vessel-based registration for laparoscopic liver surgery. Int. J. Comput. Assist. Radiol. Surg. 10(12), 1951–1961 (2015)

    Article  Google Scholar 

  20. Thomson, B.R., et al.: Hepatic vessel segmentation using a reduced filter 3D U-Net in ultrasound imaging. arXiv preprint arXiv:1907.12109 (2019)

  21. Wei, W., et al.: Fast registration for liver motion compensation in ultrasound-guided navigation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1132–1136. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart R. Thomson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomson, B.R. et al. (2020). MR-to-US Registration Using Multiclass Segmentation of Hepatic Vasculature with a Reduced 3D U-Net. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics