Skip to main content

Automated and Autonomous Driving in Freight Transport - Opportunities and Limitations

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12433))

Included in the following conference series:

Abstract

The development of mobility has always had a considerable influence on economic, social and political structures. Without efficient transport systems, the industrial revolutions of the last centuries would not have been possible or only to a much lesser extent. With the advancing digitalization and the development of automated and autonomous vehicles, new framework conditions are emerging, which are leading to far-reaching changes in the transport sector. In this contribution, the discussions regarding the existing automated and autonomous vehicles in the field of the main freight transport modes as well as possible developments will be presented and considered in the light of future demand structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acker, A., Kauppila, J.: How transport demand will change through 2050. In: OECD, International Transport Forum. ITF Transport Outlook 2019, pp. 21–46, OECD Publishing, Paris (2019)

    Google Scholar 

  2. Ainsalu, J., et al.: State of the art of automated buses. Sustainablity 10(9), 3118 (2018)

    Google Scholar 

  3. Akbar, A., Aasen, A.K., Msakni, M.K., Fagerholt, K., Lindstad, E., Meisel, F.: An economic analysis of introducing autonomous ships in a short‐sea liner shipping network. Int. Trans. Oper. Res. (2020, in Press)

    Google Scholar 

  4. Arena, F., Pau, G.: An overview of vehicular communications. Future Internet 11, 27 (2019)

    Google Scholar 

  5. Arnold, E., Al-Jarrah, O.Y., Dianati, M., Fallah, S., Oxtoby, D., Mouzakitis, A.: A survey on 3D object detection methods for autonomous driving applications. IEEE Trans. Intell. Transp. Syst. 20(10), 3782–3795 (2019)

    Google Scholar 

  6. Aurambout, J.-P., Gkoumas, K., Ciuffo, B.: Last mile delivery by drones - an estimation of viable market potential and access to citizens across European cities. Eur. Transp. Res. Rev. 11(30), 1–21 (2019)

    Google Scholar 

  7. Azmat, M., Kummer, S.: Potential applications of unmanned ground and aerial vehicles to mitigate challenges of transport and logistics-related critical success factors in the humanitarian supply chain. Asian J. Sustain. Soc. Responsib. 5(1), 1–22 (2020). https://doi.org/10.1186/s41180-020-0033-7

    Article  Google Scholar 

  8. Bačkalov, I.: Safety of autonomous inland vessels: an analysis of regulatory barriers in the present technical standards in Europe. Saf. Sci. 128, 104763 (2020)

    Google Scholar 

  9. Barmpounakis, E.N., Vlahogianni, E.I., Golias, J.C.: Unmanned aerial aircraft systems for transportation engineering - current practice and future challenges. Int. J. Transp. Sci. Technol. 5(3), 111–122 (2016)

    Google Scholar 

  10. Bartolini, C., Tettamanti, T., Varga, I.: Critical features of autonomous road transport from the perspective of technological regulation and law. Transp. Res. Procedia 27, 791–798 (2017)

    Google Scholar 

  11. Ben-Ner, A., Siemsen, E.: Decentralization and localization of production - the organizational and economic consequences of additive manufacturing (3d printing). Calif. Manag. Rev. 59(2), 5–23 (2017)

    Google Scholar 

  12. Berger, T.: Railroads and rural industrialization - evidence from a historical policy experiment. Explor. Econ. Hist. 74, 101277 (2019)

    Google Scholar 

  13. Beugin, J., Legrand, C., Marais, J., Berbineau, M., El-Koursi, E.M.: Safety appraisal of GNSS-based localization systems used in train spacing control. IEEE Access 6, 9898–9916 (2018)

    Google Scholar 

  14. Bigman, Y.E., Waytz, A., Alterovitz, R., Gray, K.: Holding robots responsible - the elements of machine morality. Trends Cogn. Sci. 23(5), 365–368 (2019)

    Google Scholar 

  15. Bildstein, A., Seidelmann, J.: Migration zur Industrie- 4.0-Fertigung. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0 Bd.1. SRT, pp. 227–242. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-45279-0_44

    Chapter  Google Scholar 

  16. Bissell, D., Birtchnell, T., Elliott, A., Hsu, E.L.: Autonomous automobilities - the social impacts of driverless vehicles. Curr. Sociol. 68(1), 116–134 (2020)

    Google Scholar 

  17. Bogart, D.: Turnpike trusts, infrastructure investment, and the road transportation revolution in eighteenth-century England. J. Econ. Hist. 65(2), 540–543 (2005)

    MathSciNet  Google Scholar 

  18. Bogart, D.: Turnpike trusts and property income - new evidence on the effects of transport improvements and legislation in eighteenth-century England. Econ. Hist. Rev. 62(1), 128–152 (2009)

    Google Scholar 

  19. Bogart, D.: Inter-modal network externalities and transport development - evidence from roads, canals, and ports during the English industrial revolution. Netw. Spat. Econ. 9(3), 309–338 (2009)

    Google Scholar 

  20. Boysen, N., Schwerdfeger, S., Weidinger, F.: Scheduling last-mile deliveries with truck-based autonomous robots. Eur. J. Oper. Res. 8(2), 253–265 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Bratić, K., Pavić, I., Vukša, S., Stazić, L.: A review of autonomous and remotely controlled ships in maritime sector. Trans. Marit. Sci. 8(2), 253–265 (2019)

    Google Scholar 

  22. Bucsky, P.: Autonomous vehicles and freight traffic - towards better efficiency of road, rail or urban logistics? Urban Dev. Issues 58, 41–51 (2018)

    Google Scholar 

  23. Bundesamt für Güterverkehr (BAG) (Hrsg.): Gleitende Mittelfristprognose für den Güter - und Personenverkehr - Mittelfristprognose Winter 2019/20. München/Köln (2020)

    Google Scholar 

  24. Burmeister, H.C., Bruhn, W., Rødseth, Ø.J., Porathe, T.: Autonomous unmanned merchant vessel and its contribution towards the e-navigation implementation - the MUNIN perspective. Int. J. e-Navig. Marit. Econ. 1, 1–13 (2014)

    Google Scholar 

  25. Carlsson, J.G., Song, S.: Coordinated logistics with a truck and a drone. Manag. Sci. 64(9), 4052–4069 (2017)

    Google Scholar 

  26. Chan, C.-Y.: Advancements, prospects, and impacts of automated driving systems. Int. J. Transp. Sci. Technol. 6, 208–216 (2017)

    Google Scholar 

  27. Chandra, S., Christiansen, M., Fagerholt, K.: Analysing the modal shift from road-based to coastal shipping-based distribution - a case study of outbound automotive logistics in India. Marit. Policy Manag. 47(2), 273–286 (2020)

    Google Scholar 

  28. Chindhe, G., Javali, A., Patil, P., Budhawant, P.: A survey on various location tracking systems. Int. Res. J. Eng. Technol. 5(12), 671–675 (2018)

    Google Scholar 

  29. Christodoulou, A., Raza, Z., Woxenius, J.: The integration of RoRo shipping in sustainable intermodal transport chains - the case of a North European RoRo service. Sustainability 11(8), 2422 (2019)

    Google Scholar 

  30. Colefax, A.P., Butcher, P.A., Kelaher, B.P.: The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES J. Mar. Sci. 75(1), 1–8 (2018)

    Google Scholar 

  31. Coluccia, D.: The first industrial revolution (c1760–c1870). In: Zanda, G. (ed.) Corporate Management in a Knowledge-Based Economy, pp. 41–51. Palgrave Macmillan, London (2012)

    Google Scholar 

  32. Coluccia, D.: The second industrial revolution (late 1800s and early 1900s). In: Zanda, G. (ed.) Corporate Management in a Knowledge-Based Economy, pp. 52–64. Palgrave Macmillan, London (2012)

    Google Scholar 

  33. Daduna, J.R.: Verkehrsträgerwettbewerb im Güterverkehr - Eine Scheindiskussion? In: Voss, S., Pahl, J., Schwarze, S. (eds.) Logistik Management, pp. 247–260. Physica, Heidelberg (2009)

    Google Scholar 

  34. Daduna, J.R.: Short sea shipping and river-sea shipping in the multi-modal transport of containers. Int. J. Ind. Eng. 20(1/2), 225–240 (2013)

    Google Scholar 

  35. Daduna, J.R.: Developments in city logistics - the path between expectations and reality. In: Paternina-Arboleda, C., Voß, S. (eds.) ICCL 2019. LNCS, vol. 11756, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31140-7_1

    Chapter  Google Scholar 

  36. Daduna, J.R.: Evolution of public transport in rural areas - new technologies and digitization. In: Marcus, A., Rosenzweig, E. (eds.) HCII 2020. LNCS, vol. 12202, pp. 82–99. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49757-6_6

    Chapter  Google Scholar 

  37. de la Torre, G., Rad, P., Choo, K.K.R.: Driverless vehicle security - challenges and future research opportunities. Future Gener. Comput. Syst. 108, 1092–1111 (2020)

    Google Scholar 

  38. De Ryck, M., Versteyhe, M., Debrouwere, F.: Automated guided vehicle systems, state-of-the-art control algorithms and techniques. J. Manuf. Syst. 54, 152–173 (2020)

    Google Scholar 

  39. Devaraju, A., Chen, L., Negenborn, R.R.: Autonomous surface vessels in ports: applications, technologies and port infrastructures. In: Cerulli, R., Raiconi, A., Voß, S. (eds.) ICCL 2018. LNCS, vol. 11184, pp. 86–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00898-7_6

    Chapter  Google Scholar 

  40. Devine, W.D.: From shafts to wires - historical perspective on electrification. J. Econ. Hist. 43(2), 347–372 (1983)

    Google Scholar 

  41. Dohner, S.M., Pilegard, T.C., Trembanis, A.C.: Coupling traditional and emergent technologies for improved coastal zone mapping. Estuaries Coasts (2020, in Press)

    Google Scholar 

  42. Erceg, B.Č.: Inland waterways transport in the European union - flowing or still standing? In: Proceedings of the International Scientific Conference “Social Changes in the Global World”, vol. 1, no. 6, pp. 123–137 (2019)

    Google Scholar 

  43. European Commission (EC): EU transport in figures. Publications Office of the EU, Luxembourgh (2019)

    Google Scholar 

  44. Fantechi, A.: Connected or autonomous trains? In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_1

    Chapter  Google Scholar 

  45. Felski, A., Zwolak, K.: The ocean-going autonomous ship - challenges and threats. J. Mar. Sci. Eng. 8(1), 41 (2020)

    Google Scholar 

  46. Fraedrich, E., Lenz, B.: Societal and individual acceptance of autonomous driving. In: Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomous Driving, pp. 621–640. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-8_29

    Chapter  Google Scholar 

  47. Frandsen, C.S., Nielsen, M.M., Chaudhuri, A., Jayaram, J., Govindan, K.: In search for classification and selection of spare parts suitable for additive manufacturing - a literature review. Int. J. Prod. Res. 58(4), 970–996 (2020)

    Google Scholar 

  48. Frey, C.B., Osborne, M.A.: The future of employment - how susceptible are jobs to computerisation? Technol. Forecast. Soc. Chang. 114, 254–280 (2017)

    Google Scholar 

  49. Furtado, F., Martinez, L.: Disruptions in freight transport. In: OECD/International Transport Forum, ITF Transport Outlook 2019, pp. 153–216, OECD Publishing, Paris (2019)

    Google Scholar 

  50. Gagatsi, E., Estrup, T., Halatsis, A.: Exploring the potentials of electrical waterborne transport in Europe - the E-ferry concept. Transp. Res. Procedia 14, 1571–1580 (2016)

    Google Scholar 

  51. Gattuso, D., Cassone, G.C., Lucisano, A., Lucisano, M., Lucisano, F.: Automated rail wagon for new freight transport opportunities. In: IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 57–62 (2017)

    Google Scholar 

  52. Ghaderi, H.: Autonomous technologies in short sea shipping - trends, feasibility and implications. Transp. Rev. 39(1), 152–173 (2019)

    MathSciNet  Google Scholar 

  53. Gleichauf, J., Vollet, J., Pfitzner, C., Koch, P., May, S.: Sensor fusion approach for an autonomous shunting locomotive. In: Gusikhin, O., Madani, K. (eds.) ICINCO 2017. LNEE, vol. 495, pp. 603–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-11292-9_30

    Chapter  Google Scholar 

  54. Greenwood, J.: The third industrial revolution - technology, productivity, and income equality. Econ. Rev. 35(2), 2–12 (1999)

    Google Scholar 

  55. Grübler, A.: The Rise and Fall of Infrastructures. Physica, Heidelberg (1990)

    Google Scholar 

  56. Grunwald, A.: Autonomes Fahren – Technikfolgen, Ethik und Risiken. Straßenver-kehrsrecht 19(3), 81–86 (2019)

    Google Scholar 

  57. Guo, Z., Le, W., Wu, Y., Wang, W.: A multi-step approach framework for freight forecasting of river-sea direct transport without direct historical data. Sustainability 11(15), 4252 (2019)

    Google Scholar 

  58. Haas, R.E., Bhattacharjee, S., Möller, D.P.F.: Advanced driver assistance systems. In: Akhilesh, K.B., Möller, D.P.F. (eds.) Smart Technologies, pp. 345–371. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7139-4_27

    Chapter  Google Scholar 

  59. Hammedi, W., Ramirez-Martinez, M., Brunet, P., Senouci, S.M., Messous, M.A.: Deep learning-based real-time object detection in inland navigation. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019)

    Google Scholar 

  60. Hardeman, A.B.: Sustainable alternative air transport technologies. In: Walker, T., Bergantino, A.S., Sprung-Much, N., Loiacono, L. (eds.) Sustainable Aviation, pp. 277–306, Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28661-3_14

  61. Hassanalian, M., Abdelkefi, A.: Classifications, applications, and design challenges of drones - a review. Prog. Aerosp. Sci. 91, 99–131 (2017)

    Google Scholar 

  62. Hassler, S.C., Baysal-Gurel, F.: Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy 9(10), 618 (2019)

    Google Scholar 

  63. Hoffmann, T., Prause, G.: On the regulatory framework for last-mile delivery robots. Machines 6(3), 33 (2018)

    Google Scholar 

  64. Holm, M.B., Medbøen, C.A.B., Fagerholt, K., Schütz, P.: Shortsea liner network design with transhipments at sea - a case study from Western Norway. Flex. Serv. Manuf. J. 31(3), 598–619 (2019)

    Google Scholar 

  65. Hoog, T., Ghosh, S.: Autonomous merchant vessels: examination of factors that impact the effective implementation of unmanned ships. Aust. J. Marit. Ocean Aff. 8(3), 206–222 (2016)

    Google Scholar 

  66. Hunt Jr., E.R., Daughtry, C.S.T.: What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 39(15–16), 5345–5376 (2018)

    Google Scholar 

  67. Jacob, J.D., Chilson, P.B., Houston, A.L., Smith, S.W.: Considerations for atmospheric measurements with small unmanned aircraft systems. Atmosphere 9(7), 252 (2018)

    Google Scholar 

  68. Jennings, D., Figliozzi, M.A.: A study of sidewalk autonomous delivery robots and their potential impacts on freight efficiency and travel. Transp. Res. Rec. 2673(6), 317–326 (2019)

    Google Scholar 

  69. Jo, K., Kim, C., Sunwoo, M.: Simultaneous localization and map change update for the high definition map-based autonomous driving car. Sensors 18(9), 3145 (2018)

    Google Scholar 

  70. Johnsen, L., Duarte, F., Ratti, C., Xiaojie, T., Tian, T.: ROBOAT - a fleet of autonomous boats for Amsterdam. Lands. Archit. Front. 7(2), 100–110 (2019)

    Google Scholar 

  71. Johnston, D.W.: Unoccupied aircraft systems in marine science and conservation. Ann. Rev. Mar. Sci. 11, 439–463 (2019)

    Google Scholar 

  72. Ju, C., Son, H.I.: Multiple UAV systems for agricultural applications - control, implementation, and evaluation. Electronics 7(9), 162 (2018)

    Google Scholar 

  73. Kaljahi, M.A., et al.: An automatic zone detection system for safe landing of UAVs. Expert Syst. Appl. 122, 319–333 (2019)

    Google Scholar 

  74. Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P., Zarzycki, H.: Drones and possibilities of their using. J. Civ. Environ. Eng. 6(3), 1–7 (2016)

    Google Scholar 

  75. Kim, J., Kim, S., Ju, C., Son, H.I.: Unmanned aerial vehicles in agriculture - a review of perspective of platform, control, and applications. IEEE Access 7, 105100–105115 (2019)

    Google Scholar 

  76. Klemin, A.: Motorless flight. Sci. Am. 174(1), 17–19 (1946)

    Google Scholar 

  77. Kobyliński, L.: Smart ships - autonomous or remote controlled. Sci. J. Marit. Univ. Szczecin 53(125), 28–34 (2018)

    Google Scholar 

  78. Konings, R., Wiegmans, B.: Inland waterway transport - an overview. In: Wiegmans, B., Konings, R. (eds.) Inland Waterway Transport, pp. 1–17. Routledge, New York (2016)

    Google Scholar 

  79. Kotowska, I.: The role of ferry and ro-ro shipping in sustainable development of transport. Rev. Econ. Perspect. 15(1), 35–48 (2015)

    Google Scholar 

  80. Krämer, I.: Shunt-E 4.0 - autonomous zero emission shunting processes in port and hinterland railway operations. J. Traffic Transp. Eng. 7, 157–164 (2019)

    Google Scholar 

  81. Kum, B.C., et al.: Monitoring applications for multifunctional unmanned surface vehicles in marine coastal environments. J. Coast. Res. 85(sp1), 1381–1385 (2018)

    Google Scholar 

  82. Kuutti, S., Fallah, S., Katsaros, K., Dianati, M., Mccullough, F., Mouzakitis, A.: A survey of the state-of-the-art localisation techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J. 5(2), 829–846 (2018)

    Google Scholar 

  83. Lenk, M.: Der programmierte Tod? Autonomes Fahren und die strafrechtliche Behandlung dilemmatischer Situationen. Straßenverkehrsrecht 19(5), 166–171 (2019)

    Google Scholar 

  84. Liimatainen, H., van Vliet, O., Aplyn, D.: The potential of electric trucks - an international commodity-level analysis. Appl. Energy 236, 804–814 (2019)

    Google Scholar 

  85. Lim, K.L., Bräunl, T.: A methodological review of visual road recognition procedures for autonomous driving applications. arXiv preprint:1905.01635 (2019)

    Google Scholar 

  86. Lisaj, A.: Implementation of e-navigation strategies for RIS centres supporting inland navigation. TransNav – Int. J. Mar. Navig. Saf. Sea Transp. 13(1), 145–149 (2019)

    Google Scholar 

  87. Łubczonek, J.: Geoprocessing of high resolution imageries for shoreline extraction in the process of the production of inland electronic navigational charts. Photogram.-Fernerkundung-Geoinf. 2016(4), 225–235 (2016)

    Google Scholar 

  88. Luo, Q., Cao, Y., Liu, J., Benslimane, A.: Localization and navigation in autonomous driving - threats and countermeasures. IEEE Wirel. Commun. 26(4), 38–45 (2019)

    Google Scholar 

  89. Maes, J., Sys, C., Vanelslander, T.: City logistics by water: good practices and scope for expansion. In: Ocampo-Martinez, C., Negenborn, R.R. (eds.) Transport of Water versus Transport over Water. ORSIS, vol. 58, pp. 413–437. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16133-4_21

    Chapter  Google Scholar 

  90. Marais, J., Beugin, J., Berbineau, M.: A survey of GNSS-based research and developments for the European railway signaling. IEEE Trans. Intell. Transp. Syst. 10(18), 2602–2618 (2017)

    Google Scholar 

  91. Martínez-Díaz, M., Soriguera, F., Pérez, I.: Autonomous driving - a bird’s eye view. IET Intell. Transp. Syst. 13(4), 563–579 (2019)

    Google Scholar 

  92. Meißner, D., Klein, B., Ionita, M.: Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe. Hydrol. Earth Syst. Sci. 21, 6401–6423 (2017)

    Google Scholar 

  93. Miciuła, I., Wojtaszek, H.: Automatic hazard identification information system (AHIIS) for decision support in inland waterway navigation. Procedia Comput. Sci. 159, 2313–2323 (2019)

    Google Scholar 

  94. Milford, M., Anthony, S., Scheirer, W.: Self-driving vehicles - key technical challenges and progress off the road. IEEE Potentials 39(1), 37–45 (2020)

    Google Scholar 

  95. Montanaro, U., et al.: Towards connected autonomous driving - review of use-cases. Veh. Syst. Dyn. 57(6), 779–814 (2019)

    Google Scholar 

  96. Moriarty, P., Honnery, D.: Prospects for hydrogen as a transport fuel. Int. J. Hydrog. Energy 44(31), 16029–16037 (2019)

    Google Scholar 

  97. Moshayedi, A.J., Jinsong, L., Liao, L.: AGV (automated guided vehicle) robot - mission and obstacles in design and performance. J. Simul. Anal. Nov. Technol. Mech. Eng. 12(4), 5–18 (2019)

    Google Scholar 

  98. Mukadam, K., Sinh, A., Karani, R.: Detection of landing areas for unmanned aerial vehicles. In: IEEE International Conference on Computing Communication Control and automation (ICCUBEA), pp. 1–5 (2016)

    Google Scholar 

  99. Munim, Z.H.: Autonomous ships - a review, innovative applications and future maritime business models. Supply Chain Forum – Int. J. 20(4), 266–279 (2019)

    Google Scholar 

  100. Näsi, R., et al.: Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 30, 72–83 (2018)

    Google Scholar 

  101. Nentwich, M., Horváth, D.M.: The vision of delivery drones. Zeitschrift für Technikfolgenabschätzung Theorie Praxis 27(2), 46–52 (2018)

    Google Scholar 

  102. Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones - a survey. Networks 72(4), 411–458 (2018)

    MathSciNet  Google Scholar 

  103. Park, J., Kim, S., Suh, K.: A comparative analysis of the environmental benefits of drone-based delivery services in urban and rural areas. Sustainability 10(3), 1–15 (2018)

    Google Scholar 

  104. Peeters, G., et al.: An unmanned inland cargo vessel - design, build, and experiments. Ocean Eng. 201, 107056 (2020)

    Google Scholar 

  105. Piacentini, G., Goatin, P., Ferrara, A.: A macroscopic model for platooning in highway traffic. SIAM J. Appl. Math. 80(1), 639–656 (2020)

    MathSciNet  MATH  Google Scholar 

  106. Piatkowski, P., Puszkiewicz, W.: Electric vehicles - problems or solutions. J. Mech. Energy Eng. 2(1), 59–66 (2018)

    Google Scholar 

  107. Polvara, R., Sharma, S., Wan, J., Manning, A., Sutton, R.: Obstacle avoidance approaches for autonomous navigation of unmanned surface vehicles. J. Navig. 71(1), 241–256 (2018)

    Google Scholar 

  108. Porathe, T.: Maritime autonomous surface ships (MASS) and the COLREGS - do we need quantified rules or is “the ordinary practice of seamen” specific enough? TransNav – Int. J. Mar. Navig. Saf. Sea Transp. 13(3), 511–517 (2019)

    Google Scholar 

  109. Porathe, T., Hoem, Å.S., Fjørtoft, K.E., Rødseth, Ø.J., Johnsen, S.O.: At least as safe as manned shipping? Autonomous shipping, safety and “human error”. In: Haugen, S., Barros, A., van Gulijk, C., Kongsvik, T., Vinnem, J.E. (eds.) Safety and Reliability-Safe Societies in a Changing World, pp. 417–425. Taylor & Francis, London (2018)

    Google Scholar 

  110. Ramos, M.A., Utne, I.B., Mosleh, A.: Collision avoidance on maritime autonomous surface ships - operators’ tasks and human failure events. Saf. Sci. 116, 33–44 (2019)

    Google Scholar 

  111. Ramos, M., Utne, I.B., Vinnem, J.E., Mosleh, A.: Accounting for human failure in autonomous ships operations. In: Haugen, S., Barros, A., van Gulijk, C., Kongsvik, T., Vinnem, J.E. (eds.) Safety and Reliability-Safe Societies in a Changing World, pp. 355–363. Taylor & Francis, London (2018)

    Google Scholar 

  112. Rao, B., Gopi, A.G., Maione, R.: The societal impact of commercial drones. Technol. Soc. 45, 83–90 (2016)

    Google Scholar 

  113. Raza, Z., Svanberg, M., Wiegmans, B.: Modal shift from road haulage to short sea shipping - a systematic literature review and research directions. Transp. Rev. 40(3), 382–406 (2020)

    Google Scholar 

  114. Ristić-Durrant, D., Ćirić, I., Simonović, M., Nikolić, V., Leu, A., Brindić, B.: Towards autonomous obstacle detection in freight railway. In: XVII International Scientific-Expert Conference on Railways (2016)

    Google Scholar 

  115. Savelsbergh, M., van Woensel, T.: City logistics - challenges and opportunities. Transp. Sci. 50(2), 99–110 (2016)

    Google Scholar 

  116. Schiaretti, M., Chen, L., Negenborn, R.R.: Survey on autonomous surface vessels: Part I - a new detailed definition of autonomy levels. ICCL 2017. LNCS, vol. 10572, pp. 219–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68496-3_15

    Chapter  Google Scholar 

  117. Schiaretti, M., Chen, L., Negenborn, R.R.: Survey on autonomous surface vessels - Part II - categorization of 60 prototypes and future applications. In: Bektas, T., Coniglio, S., Martinez-Sykora, A., Voß, S. (eds.) Computational Logistics - ICCL 2017, pp. 234–252, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68496-3_16

  118. Schilk, G., Seemann, L.: Use of ITS technologies for multimodal transport operations - River Information Services (RIS) transport logistics services. Procedia-Soc. Behav. Sci. 48, 622–631 (2016)

    Google Scholar 

  119. Schindler, C.: Schienenverkehrstechnik 4.0. In: Frenz, W. (ed.) Handbuch Industrie 4.0: Recht, Technik, Gesellschaft, pp. 719–757. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-58474-3_38

    Chapter  Google Scholar 

  120. Schindler, C., Nießen, N., Vallée, D.: Assistierter, automatischer oder autonomer Betrieb - Potentiale für den Schienenverkehr. Eisenbahntechnische Rundschau 66(4), 32–37 (2017)

    Google Scholar 

  121. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for autonomous vehicles. Ann. Rev. Control Robot. Auton. Syst. 1, 187–210 (2018)

    Google Scholar 

  122. Sehrawat, V.: Legal status of drones under LOAC and international law. Penn State J. Law Int. Aff. 5(1), 164–206 (2017)

    Google Scholar 

  123. Shamsudheen, P.V.: Growth and development of civil aviation in India. Thesis, Department of Business Administration Aligarh Muslim University, Aligarh (1982)

    Google Scholar 

  124. Silva, M.F., Cerqueira, A.S., Vidal, V.F., Honório, L.M., Santos, M.F., Oliveira, E.J.: Landing area recognition by image applied to an autonomous control landing of VTOL aircraft. In: IEEE International Carpathian Control Conference, pp. 240–245 (2017)

    Google Scholar 

  125. Silverajan, B., Ocak, M., Nagel, B.: Cybersecurity attacks and defences for unmanned smart ships. In: IEEE Smart Data, pp. 15–20 (2018)

    Google Scholar 

  126. Singh, K.K., Frazier, A.E.: A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int. J. Remote Sens. 39(15–16), 5078–5098 (2018)

    Google Scholar 

  127. Smyczyński, P., Starzec, Ł., Granosik, G.: Autonomous drone control system for object tracking - flexible system design with implementation example. In: IEEE International Conference on Methods and Models in Automation and Robotics, pp. 734–738 (2017)

    Google Scholar 

  128. Song, X., Jin, J.G., Hu, H.: Planning shuttle vessel operations in large container terminals based on waterside congestion cases. Marit. Policy Manag. (2020, in Press). https://doi.org/10.1080/03088839.2020.1719443

  129. Stateczny, A., Kazimierski, W., Burdziakowski, P., Motyl, W., Wisniewska, M.: Shore construction detection by automotive radar for the needs of autonomous surface vehicle navigation. Int. J. Geo-Inf. 8(2), 80 (2019)

    Google Scholar 

  130. Stene, T.M.: Automation of the rail - removing the human factor? In: Haugen, S., Barros, A., van Gulijk, C., Kongsvik, T., Vinnem, J.E. (eds.) Safety and Reliability-Safe Societies in a Changing World, pp. 1947–1955. Taylor & Francis, London (2018)

    Google Scholar 

  131. Tang, B., Arat, H.T., Baltacıoğlu, E., Aydin, K.: Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. Int. J. Hydrog. Energy 44(20), 10120–10128 (2019)

    Google Scholar 

  132. Tannum, M.S., Ulvensøen, J.H.: Urban mobility at sea and on waterways in Norway. J. Phys. – Conf. Ser. 1357(1), 012018 (2019)

    Google Scholar 

  133. Tasler, G., Knollmann, V.: The introduction of highly automatic operation - towards fully automatic train operation. Signal. + Datacommun. 110(6), 6–14 (2018)

    Google Scholar 

  134. Tiwari, A., Akhilesh, K.B.: Exploring connected cars. In: Akhilesh, K.B., Möller, D.P.F. (eds.) Smart Technologies, pp. 305–315. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7139-4_23

    Chapter  Google Scholar 

  135. Taylor, G.R.: The Transportation Revolution 1815–1860. Rinehart, New York (1951)

    Google Scholar 

  136. Ullrich, G. (ed.): Fahrerlose Transportsysteme. Springer, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-27472-6_5

    Book  Google Scholar 

  137. van Dorsser, C.: Existing waterway infrastructures and future need. In: Wiegmans, B., Konings, R. (eds.) Inland Waterway Transport, pp. 99–124. Routledge, New York (2016)

    Google Scholar 

  138. van Duin, J.H.R., Kortmann, L.J., van de Kamp, M.: Toward sustainable urban distribution using city canals - the case of Amsterdam. In: Taniguchi, E., Thompson, R.G. (eds.) City Logistics, vol. 1, pp. 65–84. Wiley, Hoboken (2018)

    Google Scholar 

  139. Venkateswaran, K.G., Nicholson, G.L., Roberts, C., Stone, R.: Impact of automation on the capacity of a mainline railway. In: IEEE International Conference on Intelligent Transportation Systems, pp. 2097–2102 (2015)

    Google Scholar 

  140. Vinnem, J.E., Utne, I.B.: Risk from cyberattacks on autonomous ships. In: Haugen, S., Barros, A., van Gulijk, C., Kongsvik, T., Vinnem, J.E. (eds.) Safety and Reliability-Safe Societies in a Changing World, pp. 1485–1492. Taylor & Francis, London (2018)

    Google Scholar 

  141. Vierth, I., Sowa, V., Cullinane, K.: Evaluating the external costs of trailer transport - a comparison of sea and road. Marit. Econ. Logist. 21(1), 61–78 (2019)

    Google Scholar 

  142. Vojković, G., Milenković, M.: Autonomous ships and legal authorities of the ship master. Case Stud. Transp. Policy 8(2), 333–340 (2020)

    Google Scholar 

  143. Wang, J., Liu, J., Kato, N.: Networking and communications in autonomous driving - a survey. IEEE Commun. Surv. Tutor. 21(2), 1243–1274 (2018)

    Google Scholar 

  144. Wiesmann, B., Snoei, J.R., Hilletofth, P., Eriksson, D.: Drivers and barriers to reshoring - a literature review on offshoring in reverse. Eur. Bus. Rev. 29(1), 15–42 (2017)

    Google Scholar 

  145. Witt, M.A.: De-globalization - theories, predictions, and opportunities for international business research. J. Int. Bus. Stud. 50(7), 1053–1077 (2019)

    Google Scholar 

  146. Wright, R.G.: Intelligent autonomous ship navigation using multi-sensor modalities. TransNav – Int. J. Mar. Navig. Saf. Sea Transp. 13(3), 503–510 (2019)

    Google Scholar 

  147. Xin, L., Ao, W.: Research on intelligent collision avoidance for unmanned surface vehicle with multi-ship obstacles based on COLREGS. Int. J. Mech. Eng. Robot. Res. 9(2), 238–242 (2020)

    Google Scholar 

  148. Yin, J., Tang, T., Yang, L., Xun, J., Huang, Y., Gao, Z.: Research and development of automatic train operation for railway transportation systems - a survey. Transp. Res. Part C 85, 548–572 (2017)

    Google Scholar 

  149. Zang, S., Ding, M., Smith, D., Tyler, P., Rakotoarivelo, T., Kaafar, M.A.: The impact of adverse weather conditions on autonomous vehicles - how rain, snow, fog, and hail affect the performance of a self-driving car. IEEE Veh. Technol. Mag. 14(2), 103–111 (2019)

    Google Scholar 

  150. Zgonc, B., Tekavčič, M., Jakšič, M.: The impact of distance on mode choice in freight transport. Eur. Transp. Res. Rev. 11(1), 1–18 (2019)

    Google Scholar 

  151. Zhang, L., Chen, F., Ma, X., Pan, X.: Fuel economy in truck platooning - a literature overview and directions for future research. J. Adv. Transp. (2020, in Press). https://doi.org/10.1155/2020/2604012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim R. Daduna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daduna, J.R. (2020). Automated and Autonomous Driving in Freight Transport - Opportunities and Limitations. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds) Computational Logistics. ICCL 2020. Lecture Notes in Computer Science(), vol 12433. Springer, Cham. https://doi.org/10.1007/978-3-030-59747-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59747-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59746-7

  • Online ISBN: 978-3-030-59747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics