Skip to main content

Single-subject Prediction: A Statistical Paradigm for Precision Psychiatry

  • Chapter
  • First Online:
Brain Network Dysfunction in Neuropsychiatric Illness
  • 736 Accesses

Abstract

Psychiatric patients are treated every day by medical doctors based on clinical guidelines grounded in group definitions. Therapeutic intervention for a particular patient, however, frequently follows a trial-and-error path (cf. Rush et al. 2006). On average, only about 50% of patients benefit from a specific psychotropic drug therapy (Wong et al. 2010). Similar failure rates apply to common psychotherapeutic treatments (Hofmann et al. 2012). To render clinical care more effective, brain-imaging and genomics are among the most promising, yet expensive avenues. In research on the neural and genetic basis of psychiatric disease, the prevailing research ideology aims to discover new pathophysiological mechanisms as a stepping-stone to then reduce suffering of psychiatric patients (Insel and Cuthbert 2015). Instead of trying to exploit newly discovered disease mechanisms toward novel treatments that help patient groups on average, an alternative research agenda is coming into reach over recent years. A fast and cost-effective strategy is to accurately predict which of the currently existing treatment options is likely to work best for one particular patient (Bzdok and Meyer-Lindenberg 2018; Perna and Nemeroff 2017; Stephan et al. 2017b). Increasing individualization of therapeutic intervention in precision psychiatry would also open up the opportunity to automatically derive the diagnosis or expected disease course in single patients from data. Because psychiatric disorders result from disturbed brain biology, quantitative measures from in-vivo brain-imaging is ready for such predictive modeling approaches because structural, functional, or diffusion magnetic resonance imaging (sMRI, fMRI, dMRI) and sometimes positron emission tomography (PET) are already available in most modern psychiatric hospitals. Moreover, such spatially or temporally highly resolved imaging techniques produce data of sufficient quantity and information granularity on which to apply data-driven statistical techniques (Eyre et al. 2016).

predictions, but not inferences, forecast what will happen.

White (1971)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Niels Bohr put this point in the following words: “Prediction is very difficult, especially if it’s about the future.”

References

  • Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.T., 2012. Learning from data. AMLBook, California.

    Google Scholar 

  • Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., 2017. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145, 137–165.

    Article  Google Scholar 

  • Breiman, L., 2001. Statistical Modeling: The Two Cultures. Statistical Science 16, 199–231.

    Article  Google Scholar 

  • Breiman, L., Friedman, J.H., 1997. Predicting multivariate responses in multiple linear regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59, 3–54.

    Article  Google Scholar 

  • Brodersen, K.H., Schofield, T.M., Leff, A.P., Ong, C.S., Lomakina, E.I., Buhmann, J.M., Stephan, K.E., 2011. Generative embedding for model-based classification of fMRI data. PLoS Comput Biol 7, e1002079.

    Article  CAS  Google Scholar 

  • Bzdok, D., 2017a. Classical Statistics and Statistical Learning in Imaging Neuroscience. Front Neurosci.

    Google Scholar 

  • Bzdok, D., 2017b. Classical Statistics and Statistical Learning in Imaging Neuroscience. Frontiers in Neuroscience 11, 543.

    Article  Google Scholar 

  • Bzdok, D., Meyer-Lindenberg, A., 2018. Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: CNNI, in press.

    Google Scholar 

  • Bzdok, D., Yeo, B.T.T., 2017. Inference in the age of big data: Future perspectives on neuroscience. Neuroimage 14, 549–564.

    Article  Google Scholar 

  • Caruana, R., 1998. Multitask learning. Learning to learn. Springer, pp. 95–133.

    Google Scholar 

  • Casella, G., Berger, R.L., 2002. Statistical inference. Duxbury Pacific Grove, CA.

    Google Scholar 

  • Drysdale, A.T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R.N., Zebley, B., Oathes, D.J., Etkin, A., Schatzberg, A.F., Sudheimer, K., Keller, J., Mayberg, H.S., Gunning, F.M., Alexopoulos, G.S., Fox, M.D., Pascual-Leone, A., Voss, H.U., Casey, B.J., Dubin, M.J., Liston, C., 2017. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine 23, 28–38.

    Article  CAS  Google Scholar 

  • Efron, B., 2012. Large-scale inference: empirical Bayes methods for estimation, testing, and prediction. Cambridge University Press.

    Google Scholar 

  • Efron, B., Hastie, T., 2016. Computer-Age Statistical Inference. Cambridge University Press.

    Google Scholar 

  • Eyre, H.A., Singh, A.B., Reynolds, C., 2016. Tech giants enter mental health. World Psychiatry 15, 21–22.

    Article  Google Scholar 

  • Gabrieli, J.D., Ghosh, S.S., Whitfield-Gabrieli, S., 2015. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85, 11–26.

    Article  CAS  Google Scholar 

  • Gigerenzer, G., 1993. The superego, the ego, and the id in statistical reasoning. A handbook for data analysis in the behavioral sciences: Methodological issues, 311–339.

    Google Scholar 

  • Goodfellow, I.J., Bengio, Y., Courville, A., 2016. Deep learning. MIT Press, USA.

    Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statistical Learning. Springer Series in Statistics, Heidelberg, Germany.

    Book  Google Scholar 

  • Henke, N., Bughin, J., Chui, M., Manyika, J., Saleh, T., Wiseman, B., Sethupathy, G., 2016. The age of analytics: Competing in a data-driven world. Technical report, McKinsey Global Institute.

    Google Scholar 

  • Hofmann, S.G., Asnaani, A., Vonk, I.J., Sawyer, A.T., Fang, A., 2012. The Efficacy of Cognitive Behavioral Therapy: A Review of Meta-analyses. Cognitive Therapy and Research 36, 427–440.

    Article  Google Scholar 

  • Insel, T.R., Cuthbert, B.N., 2015. Brain disorders? Precisely. Science 348, 499–500.

    Article  CAS  Google Scholar 

  • James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to statistical learning. Springer.

    Google Scholar 

  • Jordan, M.I., Committee on the Analysis of Massive Data, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Their Applications, Division on Engineering and Physical Sciences, National Research Council, 2013. Frontiers in Massive Data Analysis. The National Academies Press, Washington, D.C.

    Google Scholar 

  • Koutsouleris, N., Davatzikos, C., Borgwardt, S., Gaser, C., Bottlender, R., Frodl, T., Falkai, P., Riecher-Rossler, A., Moller, H.J., Reiser, M., Pantelis, C., Meisenzahl, E., 2014. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophrenia Bulletin 40, 1140–1153.

    Article  Google Scholar 

  • Kraepelin, E., 1899. Psychiatrie. Ein Lehrbuch für Studierende und Ärzte, 6th ed. Barth, Leipzig.

    Google Scholar 

  • Leonelli, S., 2016. Data-centric biology: a philosophical study. University of Chicago Press.

    Google Scholar 

  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A., 2011. Big data: The next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute.

    Google Scholar 

  • O’Neil, C., 2016. Weapons of Math Destruction. How Big Data Increases Inequality and Threatens Democracy, New York: Crown.

    Google Scholar 

  • Perna, G., Nemeroff, C.B., 2017. Personalized Medicine in Psychiatry: Back to the Future. Personalized Medicine in Psychiatry 1, 1.

    Article  Google Scholar 

  • Rahim, M., Thirion, B., Bzdok, D., Buvat, I., Varoquaux, G., 2017. Joint prediction of multiple scores captures better individual traits from brain images. Neuroimage 158, 145–154.

    Article  Google Scholar 

  • Rush, A.J., Trivedi, M.H., Wisniewski, S.R., Nierenberg, A.A., Stewart, J.W., Warden, D., Niederehe, G., Thase, M.E., Lavori, P.W., Lebowitz, B.D., 2006. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. American Journal of Psychiatry 163, 1905–1917.

    Article  Google Scholar 

  • Shalev-Shwartz, S., Ben-David, S., 2014. Understanding machine learning: From theory to algorithms. Cambridge University Press.

    Google Scholar 

  • Shmueli, G., 2010. To explain or to predict? Statistical science, 289–310.

    Google Scholar 

  • Stephan, K.E., Schlagenhauf, F., Huys, Q.J.M., Raman, S., Aponte, E.A., Brodersen, K.H., Rigoux, L., Moran, R.J., Daunizeau, J., Dolan, R.J., 2017a. Computational neuroimaging strategies for single patient predictions. Neuroimage 145, 180–199.

    Article  CAS  Google Scholar 

  • Stephan, K.E., Schlagenhauf, F., Huys, Q.J.M., Raman, S., Aponte, E.A., Brodersen, K.H., Rigoux, L., Moran, R.J., Daunizeau, J., Dolan, R.J., 2017b. Computational neuroimaging strategies for single patient predictions. Neuroimage.

    Google Scholar 

  • Wasserstein, R.L., Lazar, N.A., 2016. The ASA’s statement on p-values: context, process, and purpose. Am Stat 70, 129–133.

    Article  Google Scholar 

  • White, A.R., 1971. Inference. The Philosophical Quarterly 21, 289–302.

    Article  Google Scholar 

  • Wong, E.H.F., Yocca, F., Smith, M.A., Lee, C.-M., 2010. Challenges and opportunities for drug discovery in psychiatric disorders: the drug hunters’ perspective. International Journal of Neuropsychopharmacology 13, 1269–1284.

    Article  Google Scholar 

  • Woo, C.-W., Chang, L.J., Lindquist, M.A., Wager, T.D., 2017. Building better biomarkers: brain models in translational neuroimaging. Nature Neuroscience 20, 365–377.

    Article  CAS  Google Scholar 

  • Woo, C.W., Wager, T.D., 2015. Neuroimaging-based biomarker discovery and validation. Pain 156, 1379–1381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bzdok, D., Karrer, T.M. (2021). Single-subject Prediction: A Statistical Paradigm for Precision Psychiatry. In: Diwadkar, V.A., B. Eickhoff, S. (eds) Brain Network Dysfunction in Neuropsychiatric Illness. Springer, Cham. https://doi.org/10.1007/978-3-030-59797-9_19

Download citation

Publish with us

Policies and ethics