Skip to main content

Regenerative Approaches in Oral Medicine

  • Chapter
  • First Online:
  • 860 Accesses

Abstract

Stem cells are undifferentiated cells, which possess self-renewal properties and can produce specialized cells of multiple lineages. In addition to other stem cells from various anatomical locations within the maxillofacial complex, the oral cavity harbours both epithelial and mesenchymal stem cells, each suited to approaches for treating or managing a variety of specific conditions encountered in routine clinical oral medicine practice. This chapter focusses on stem cell and regenerative medicine approaches related to oral pathology and oral medicine with particular attention paid to oral mucosal diseases, salivary gland disorders, craniofacial and temporomandibular joint disorders, and orofacial pain conditions. The potential roles of stem cells in highlighting the pathogenesis of these conditions in addition to regenerative strategies for their management are outlined. The role of bioprinting as a potential therapeutic approach for both soft and hard tissue defects is discussed. Finally, the limitations of current approaches to regenerative medicine underpinned by imperfect and incomplete understanding of stem cell niches and their properties are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prentice DA. Adult stem cells. Circ Res. 2019;124(6):837–9. https://doi.org/10.1161/CIRCRESAHA.118.313664.

    Article  PubMed  Google Scholar 

  2. Paz AG, Maghaireh H, Mangano FG. Stem cells in dentistry: types of intra- and extraoral tissue-derived stem cells and clinical applications. Stem Cells Int. 2018;2018:4313610. https://doi.org/10.1155/2018/4313610.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jones KB, Klein OD. Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey. Int J Oral Sci. 2013;5(3):121–9. https://doi.org/10.1038/ijos.2013.46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Papagerakis S, Pannone G, Zheng L, About I, Taqi N, Nguyen NP, Matossian M, McAlpin B, Santoro A, McHugh J, Prince ME, Papagerakis P. Oral epithelial stem cells – implications in normal development and cancer metastasis. Exp Cell Res. 2014;325(2):111–29. https://doi.org/10.1016/j.yexcr.2014.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Asaka T, Akiyama M, Kitagawa Y, Shimizu H. Higher density of label-retaining cells in gingival epithelium. J Dermatol Sci. 2009;55(2):132–4. https://doi.org/10.1016/j.jdermsci.2009.03.006.

    Article  PubMed  Google Scholar 

  6. Bickenbach JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res. 1981;60:1611–20. https://doi.org/10.1177/002203458106000311011.

    Article  PubMed  Google Scholar 

  7. Bickenbach JR, Mackenzie IC. Identification and localization of label-retaining cells in hamster epithelia. J Invest Dermatol. 1984;82(6):618–22. https://doi.org/10.1111/1523-1747.ep12261460.

    Article  PubMed  Google Scholar 

  8. DiPietro LA. Oral stem cells: the fountain of youth for epithelialization and wound therapy? Adv Wound Care (New Rochelle). 2014;3(7):465–7. https://doi.org/10.1089/wound.2012.0421.

    Article  Google Scholar 

  9. Calenic B, Ishkitiev N, Yaegaki K, Imai T, Costache M, Tovaru M, Tovaru S, Parlatescu I. Characterization of oral keratinocyte stem cells and prospects of its differentiation to oral epithelial equivalents. Romanian J Morphol Embryol. 2010;51(4):641–5.

    Google Scholar 

  10. Nakamura T, Endo K, Kinoshita S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells. 2007;25(3):628–38. https://doi.org/10.1634/stemcells.2006-0494.

    Article  PubMed  Google Scholar 

  11. Bansal R, Jain A. Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med. 2015;6(1):29–34. https://doi.org/10.4103/0976-9668.149074.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x.

    Article  PubMed  Google Scholar 

  13. Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. https://doi.org/10.1038/s41536-019-0083-6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97(25):13625–30. https://doi.org/10.1073/pnas.240309797.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100(10):5807–12. https://doi.org/10.1073/pnas.0937635100.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79. https://doi.org/10.1371/journal.pone.0000079.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34(2):166–71. https://doi.org/10.1016/j.joen.2007.11.021.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55. https://doi.org/10.1016/S0140-6736(04)16627-0.

    Article  PubMed  Google Scholar 

  19. An Z, Sabalic M, Bloomquist RF, Fowler TE, Streelman T, Sharpe PT. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat Commun. 2018;9(1):378. https://doi.org/10.1038/s41467-017-02785-6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kang KJ, Ryu CJ, Jang YJ. Identification of dentinogenic cell-specific surface antigens in odontoblast-like cells derived from adult dental pulp. Stem Cell Res Ther. 2019;10(1):128. https://doi.org/10.1186/s13287-019-1232-y.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang X, Li L, Xiao L, Zhang D. Recycle the dental fairy’s package: overview of dental pulp stem cells. Stem Cell Res Ther. 2018;9(1):347. https://doi.org/10.1186/s13287-018-1094-8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boddupally K, Wang G, Chen Y, Kobielak A. Lgr5 Marks neural crest derived multipotent oral stromal stem cells. Stem Cells. 2016;34(3):720–31. https://doi.org/10.1002/stem.2314.

    Article  PubMed  Google Scholar 

  23. d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;18:75–83. https://doi.org/10.22203/ecm.v018a07.

    Article  PubMed  Google Scholar 

  24. Monti M, Graziano A, Rizzo S, Perotti C, Del Fante C, d’Aquino R, Redi CA, Rodriguez YBR. In vitro and In vivo differentiation of progenitor stem cells obtained after mechanical digestion of human dental pulp. J Cell Physiol. 2017;232(3):548–55. https://doi.org/10.1002/jcp.25452.

    Article  PubMed  Google Scholar 

  25. Sybil D, Jain V, Mohanty S, Husain SA. Oral stem cells in intraoral bone formation. J Oral Biosci. 2020;62(1):36–43. https://doi.org/10.1016/j.job.2019.12.001.

    Article  PubMed  Google Scholar 

  26. Feng F, Akiyama K, Liu Y, Yamaza T, Wang TM, Chen JH, Wang BB, Huang GT, Wang S, Shi S. Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis. 2010;16(1):20–8. https://doi.org/10.1111/j.1601-0825.2009.01593.x.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shalini HS, Vandana KL. Direct application of autologous periodontal ligament stem cell niche in treatment of periodontal osseous defects: a randomized controlled trial. J Indian Soc Periodontol. 2018;22(6):503–12. https://doi.org/10.4103/jisp.jisp_92_18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pradel W, Tausche E, Gollogly J, Lauer G. Spontaneous tooth eruption after alveolar cleft osteoplasty using tissue-engineered bone: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(4):440–4. https://doi.org/10.1016/j.tripleo.2007.07.042.

    Article  PubMed  Google Scholar 

  29. Pradel W, Lauer G. Tissue-engineered bone grafts for osteoplasty in patients with cleft alveolus. Ann Anat. 2012;194(6):545–8. https://doi.org/10.1016/j.aanat.2012.06.002.

    Article  PubMed  Google Scholar 

  30. Pradel W, Eckelt U, Lauer G. Bone regeneration after enucleation of mandibular cysts: comparing autogenous grafts from tissue-engineered bone and iliac bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):285–90. https://doi.org/10.1016/j.tripleo.2005.06.001.

    Article  PubMed  Google Scholar 

  31. Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci. 2019;11(3):23. https://doi.org/10.1038/s41368-019-0060-3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Capp JP. Cancer stem cells: from historical roots to a new perspective. J Oncol. 2019;2019:5189232. https://doi.org/10.1155/2019/5189232.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13(10):727–38. https://doi.org/10.1038/nrc3597.

    Article  PubMed  Google Scholar 

  34. Martins-Neves SR, Cleton-Jansen AM, Gomes CMF. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: where do we stand? Pharmacol Res. 2018;137:193–204. https://doi.org/10.1016/j.phrs.2018.10.011.

    Article  PubMed  Google Scholar 

  35. Freitas DP, Teixeira CA, Santos-Silva F, Vasconcelos MH, Almeida GM. Therapy-induced enrichment of putative lung cancer stem-like cells. Int J Cancer. 2014;134(6):1270–8. https://doi.org/10.1002/ijc.28478.

    Article  PubMed  Google Scholar 

  36. Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: the root of tumor recurrence and metastases. Semin Cancer Biol. 2017;44:10–24. https://doi.org/10.1016/j.semcancer.2017.02.011.

    Article  PubMed  Google Scholar 

  37. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923. https://doi.org/10.1155/2018/5416923.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shin KH, Kim RH. An updated review of oral cancer stem cells and their stemness regulation. Crit Rev Oncog. 2018;23(3–4):189–200. https://doi.org/10.1615/CritRevOncog.2018027501.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kyrodimos E, Chrysovergis A, Tsiambas E, Papanikolaou V. Cancer stem cells in oral squamous cell carcinoma. J BUON. 2018;23(5):1558–9.

    PubMed  Google Scholar 

  40. Shibata M, Hoque MO. Targeting cancer stem cells: a strategy for effective eradication of cancer. Cancers (Basel). 2019;11(5):732. https://doi.org/10.3390/cancers11050732.

    Article  Google Scholar 

  41. Lee BK. Growth factors in oral and maxillofacial surgery: potentials and challenges. J Korean Assoc Oral Maxillofac Surg. 2013;39(6):255–6. https://doi.org/10.5125/jkaoms.2013.39.6.255.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cicciù M, Herford AS, Juodžbalys G, Stoffella E. Recombinant human bone morphogenetic protein type 2 application for a possible treatment of bisphosphonates-related osteonecrosis of the jaw. J Craniofac Surg. 2012;23(3):784–8. https://doi.org/10.1097/SCS.0b013e31824dbdd4.

    Article  PubMed  Google Scholar 

  43. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70. https://doi.org/10.1152/physrev.2003.83.3.835.

    Article  PubMed  Google Scholar 

  44. Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell. 1986;46(2):155–69. https://doi.org/10.1016/0092-8674(86)90733-6.

    Article  PubMed  Google Scholar 

  45. Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc. 2006;81(9):1241–57. https://doi.org/10.4065/81.9.1241.

    Article  PubMed  Google Scholar 

  46. Massagué J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett. 2006;580(12):2811–20. https://doi.org/10.1016/j.febslet.2006.04.033.

    Article  PubMed  Google Scholar 

  47. Kaigler D, Cirelli JA, Giannobile WV. Growth factor delivery for oral and periodontal tissue engineering. Expert Opin Drug Deliv. 2006;3(5):647–62. https://doi.org/10.1517/17425247.3.5.647.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kwon TK, Song JM, Kim IR, Park BS, Kim CH, Cheong IK, Shin SH. Effect of recombinant human bone morphogenetic protein-2 on bisphosphonate-treated osteoblasts. J Korean Assoc Oral Maxillofac Surg. 2014;40(6):291–6. https://doi.org/10.5125/jkaoms.2014.40.6.291.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Conover CA. In vitro studies of insulin-like growth factor I and bone. Growth Horm IGF Res. 2000;10(Suppl B):S107–10. https://doi.org/10.1016/s1096-6374(00)80020-9.

    Article  PubMed  Google Scholar 

  50. Dohan Ehrenfest DM, Bielecki T, Jimbo R, Barbé G, Del Corso M, Inchingolo F, Sammartino G. Do the fibrin architecture and leukocyte content influence the growth factor release of platelet concentrates? An evidence-based answer comparing a pure platelet-rich plasma (P-PRP) gel and a leukocyte- and platelet-rich fibrin (L-PRF). Curr Pharm Biotechnol. 2012;13(7):1145–52. https://doi.org/10.2174/138920112800624382.

    Article  PubMed  Google Scholar 

  51. Kubota S, Kawata K, Yanagita T, Doi H, Kitoh T, Takigawa M. Abundant retention and release of connective tissue growth factor (CTGF/CCN2) by platelets. J Biochem. 2004;136(3):279–82. https://doi.org/10.1093/jb/mvh126.

    Article  PubMed  Google Scholar 

  52. Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin DJ, Shimada K, Ogawa H, Daida H, Hattori K, Ohsaka A. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J. 2005;19(14):2005–7. https://doi.org/10.1096/fj.04-3496fje.

    Article  PubMed  Google Scholar 

  53. Toulon A, Breton L, Taylor KR, Tenenhaus M, Bhavsar D, Lanigan C, Rudolph R, Jameson J, Havran WL. A role for human skin-resident T cells in wound healing. J Exp Med. 2009;206(4):743–50. https://doi.org/10.1084/jem.20081787.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ceccarelli G, Presta R, Benedetti L, Cusella De Angelis MG, Lupi SM, Rodriguez YBR. Emerging perspectives in scaffold for tissue engineering in oral surgery. Stem Cells Int. 2017;2017:4585401. https://doi.org/10.1155/2017/4585401.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14(1):15–56. https://doi.org/10.1166/jnn.2014.9127.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lei X, Gao J, Xing F, Zhang Y, Ma Y, Zhang G. Comparative evaluation of the physicochemical properties of nano-hydroxyapatite/collagen and natural bone ceramic/collagen scaffolds and their osteogenesis-promoting effect on MC3T3-E1 cells. Regen Biomater. 2019;6(6):361–71. https://doi.org/10.1093/rb/rbz026.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31. https://doi.org/10.1016/j.biomaterials.2006.01.039.

    Article  PubMed  Google Scholar 

  58. Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater. 2017;59:2–11. https://doi.org/10.1016/j.actbio.2017.06.046.

    Article  PubMed  Google Scholar 

  59. El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28. https://doi.org/10.1016/j.actbio.2017.08.030.

    Article  PubMed  Google Scholar 

  60. Souza MT, Tansaz S, Zanotto ED, Boccaccini AR. Bioactive glass Fiber-reinforced PGS matrix composites for cartilage regeneration. Materials (Basel). 2017;10(1):83. https://doi.org/10.3390/ma10010083.

    Article  Google Scholar 

  61. Aguilar-Pérez FJ, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodríguez JV, Covarrubias C, Pedram-Yazdani M. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites. J Biomater Appl. 2016;30(9):1362–72. https://doi.org/10.1177/0885328215626361.

    Article  PubMed  Google Scholar 

  62. Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013;31(3):169–76. https://doi.org/10.1016/j.tibtech.2012.12.004.

    Article  PubMed  Google Scholar 

  63. Papadimitropoulos A, Scotti C, Bourgine P, Scherberich A, Martin I. Engineered decellularized matrices to instruct bone regeneration processes. Bone. 2015;70:66–72. https://doi.org/10.1016/j.bone.2014.09.007.

    Article  PubMed  Google Scholar 

  64. Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv. 2014;32(2):462–84. https://doi.org/10.1016/j.biotechadv.2013.12.012.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–9. https://doi.org/10.1126/science.150.3698.893.

    Article  PubMed  Google Scholar 

  66. Yin H, Wang Y, Sun Z, Sun X, Xu Y, Li P, Meng H, Yu X, Xiao B, Fan T, Wang Y, Xu W, Wang A, Guo Q, Peng J, Lu S. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater. 2016;33:96–109. https://doi.org/10.1016/j.actbio.2016.01.024.

    Article  PubMed  Google Scholar 

  67. Bahar H, Yaffe A, Boskey A, Binderman I. Influence of bone-derived matrices on generation of bone in an ectopic rat model. J Orthop Res. 2010;28(5):664–70. https://doi.org/10.1002/jor.21017.

    Article  PubMed  Google Scholar 

  68. Becerra J, Andrades JA, Ertl DC, Sorgente N, Nimni ME. Demineralized bone matrix mediates differentiation of bone marrow stromal cells in vitro: effect of age of cell donor. J Bone Miner Res. 1996;11(11):1703–14. https://doi.org/10.1002/jbmr.5650111114.

    Article  PubMed  Google Scholar 

  69. Honsawek S, Bumrungpanichthaworn P, Thitiset T, Wolfinbarger L Jr. Gene expression analysis of demineralized bone matrix-induced osteogenesis in human periosteal cells using cDNA array technology. Genet Mol Res. 2011;10(3):2093–103. https://doi.org/10.4238/vol10-3gmr1329.

    Article  PubMed  Google Scholar 

  70. Gepstein R, Weiss RE, Hallel T. Bridging large defects in bone by demineralized bone matrix in the form of a powder. A radiographic, histological, and radioisotope-uptake study in rats. J Bone Joint Surg Am. 1987;69(7):984–92.

    Article  PubMed  Google Scholar 

  71. Yang Y, Lin H, Shen H, Wang B, Lei G, Tuan RS. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater. 2018;69:71–82. https://doi.org/10.1016/j.actbio.2017.12.043.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ragelle H, Naba A, Larson BL, Zhou F, Prijić M, Whittaker CA, Del Rosario A, Langer R, Hynes RO, Anderson DG. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials. 2017;128:147–59. https://doi.org/10.1016/j.biomaterials.2017.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen XD, Dusevich V, Feng JQ, Manolagas SC, Jilka RL. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res. 2007;22(12):1943–56. https://doi.org/10.1359/jbmr.070725.

    Article  PubMed  Google Scholar 

  74. Bhat A, Boyadjiev SA, Senders CW, Leach JK. Differential growth factor adsorption to calvarial osteoblast-secreted extracellular matrices instructs osteoblastic behavior. PLoS One. 2011;6(10):e25990. https://doi.org/10.1371/journal.pone.0025990.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lau TT, Lee LQ, Vo BN, Su K, Wang DA. Inducing ossification in an engineered 3D scaffold-free living cartilage template. Biomaterials. 2012;33(33):8406–17. https://doi.org/10.1016/j.biomaterials.2012.08.025.

    Article  PubMed  Google Scholar 

  76. Tour G, Wendel M, Tcacencu I. Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction. J Tissue Eng Regen Med. 2014;8(11):841–9. https://doi.org/10.1002/term.1574.

    Article  PubMed  Google Scholar 

  77. Xue JX, Gong YY, Zhou GD, Liu W, Cao Y, Zhang WJ. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials. 2012;33(24):5832–40. https://doi.org/10.1016/j.biomaterials.2012.04.054.

    Article  PubMed  Google Scholar 

  78. Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42(Suppl 2):S16–21. https://doi.org/10.1016/j.injury.2011.06.199.

    Article  PubMed  Google Scholar 

  79. Barabaschi GD, Manoharan V, Li Q, Bertassoni LE. Engineering pre-vascularized scaffolds for bone regeneration. Adv Exp Med Biol. 2015;881:79–94. https://doi.org/10.1007/978-3-319-22345-2_5.

    Article  PubMed  Google Scholar 

  80. Holzapfel BM, Rudert M, Hutmacher DW. Scaffold-based bone tissue engineering. Orthopade. 2017;46(8):701–10. https://doi.org/10.1007/s00132-017-3444-0.

    Article  PubMed  Google Scholar 

  81. Mobasseri R, Tian L, Soleimani M, Ramakrishna S, Naderi-Manesh H. Peptide modified nanofibrous scaffold promotes human mesenchymal stem cell proliferation and long-term passaging. Mater Sci Eng C Mater Biol Appl. 2018;84:80–9. https://doi.org/10.1016/j.msec.2017.11.017.

    Article  PubMed  Google Scholar 

  82. Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol. 2015;65:20–31. https://doi.org/10.1016/j.biocel.2015.05.008.

    Article  PubMed  Google Scholar 

  83. Jeong HJ, Gwak SJ, Seo KD, Lee S, Yun JH, Cho YS, Lee SJ. Fabrication of three-dimensional composite scaffold for simultaneous alveolar bone regeneration in dental implant installation. Int J Mol Sci. 2020;21(5):1863. https://doi.org/10.3390/ijms21051863.

    Article  PubMed Central  Google Scholar 

  84. Engstrand T. Biomaterials and biologics in craniofacial reconstruction. J Craniofac Surg. 2012;23(1):239–42. https://doi.org/10.1097/SCS.0b013e318241c0f4.

    Article  PubMed  Google Scholar 

  85. Azi ML, Aprato A, Santi I, Kfuri M Jr, Masse A, Joeris A. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2016;17(1):465. https://doi.org/10.1186/s12891-016-1312-4.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Moura LB, Carvalho PH, Xavier CB, Post LK, Torriani MA, Santagata M, Chagas Júnior OL. Autogenous non-vascularized bone graft in segmental mandibular reconstruction: a systematic review. Int J Oral Maxillofac Surg. 2016;45(11):1388–94. https://doi.org/10.1016/j.ijom.2016.05.004.

    Article  PubMed  Google Scholar 

  87. Demetter RS, Calahan BG, Mealey BL. Histologic evaluation of wound healing after ridge preservation with cortical, cancellous, and combined cortico-cancellous freeze-dried bone allograft: a randomized controlled clinical trial. J Periodontol. 2017;88(9):860–8. https://doi.org/10.1902/jop.2017.170155.

    Article  PubMed  Google Scholar 

  88. Lang NP, Zitzmann NU. Clinical research in implant dentistry: evaluation of implant-supported restorations, aesthetic and patient-reported outcomes. J Clin Periodontol. 2012;39(Suppl 12):133–8. https://doi.org/10.1111/j.1600-051X.2011.01842.x.

    Article  PubMed  Google Scholar 

  89. Bracey DN, Jinnah AH, Willey JS, Seyler TM, Hutchinson ID, Whitlock PW, Smith TL, Danelson KA, Emory CL, Kerr BA. Investigating the osteoinductive potential of a decellularized xenograft bone substitute. Cells Tissues Organs. 2019;207(2):97–113. https://doi.org/10.1159/000503280.

    Article  PubMed  Google Scholar 

  90. Manfro R, Fonseca FS, Bortoluzzi MC, Sendyk WR. Comparative, histological and histomorphometric analysis of three anorganic bovine xenogenous bone substitutes: bio-oss, bone-fill and gen-ox anorganic. J Maxillofac Oral Surg. 2014;13(4):464–70. https://doi.org/10.1007/s12663-013-0554-z.

    Article  PubMed  Google Scholar 

  91. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117–45. https://doi.org/10.2147/dddt.S165440.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater. 2015;31(4):317–38. https://doi.org/10.1016/j.dental.2015.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Naung NY, Shehata E, Van Sickels JE. Resorbable versus nonresorbable membranes: when and why? Dent Clin North Am. 2019;63(3):419–31. https://doi.org/10.1016/j.cden.2019.02.008.

    Article  PubMed  Google Scholar 

  94. Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59. https://doi.org/10.3390/ijms15033640.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–90. https://doi.org/10.1016/s0142-9612(00)00115-0.

    Article  PubMed  Google Scholar 

  96. Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone. 2010;46(2):386–95. https://doi.org/10.1016/j.bone.2009.09.031.

    Article  PubMed  Google Scholar 

  97. Li X, Wang Y, Wang Z, Qi Y, Li L, Zhang P, Chen X, Huang Y. Composite PLA/PEG/nHA/dexamethasone scaffold prepared by 3D printing for bone regeneration. Macromol Biosci. 2018;18(6):e1800068. https://doi.org/10.1002/mabi.201800068.

    Article  PubMed  Google Scholar 

  98. Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomed Mater. 2011;6(1):015009. https://doi.org/10.1088/1748-6041/6/1/015009.

    Article  PubMed  Google Scholar 

  99. Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Aparicio C, Fava F, Fabbri P, Taddei P, Prati C. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. Mater Sci Eng C Mater Biol Appl. 2018;82:163–81. https://doi.org/10.1016/j.msec.2017.08.040.

    Article  PubMed  Google Scholar 

  100. Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015;31(4):351–70. https://doi.org/10.1016/j.dental.2015.01.004.

    Article  PubMed  Google Scholar 

  101. de Almeida AD, Leite FG, Chaud MV, Rebelo MA, Borges L, Viroel FJM, Hataka A, Grotto D. Safety and efficacy of hydroxyapatite scaffold in the prevention of jaw osteonecrosis in vivo. J Biomed Mater Res B Appl Biomater. 2018;106(5):1799–808. https://doi.org/10.1002/jbm.b.33995.

    Article  PubMed  Google Scholar 

  102. Huang YX, Ren J, Chen C, Ren TB, Zhou XY. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl. 2008;22(5):409–32. https://doi.org/10.1177/0885328207077632.

    Article  PubMed  Google Scholar 

  103. Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(8):1399–409. https://doi.org/10.1016/j.biomaterials.2005.08.016.

    Article  PubMed  Google Scholar 

  104. Kacarevic ZP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, Ivanisevic Z, Barbeck M. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials (Basel). 2018;11(11):2199. https://doi.org/10.3390/ma11112199.

    Article  Google Scholar 

  105. Ayan B, Heo DN, Zhang Z, Dey M, Povilianskas A, Drapaca C, Ozbolat IT. Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv. 2020;6(10):eaaw5111. https://doi.org/10.1126/sciadv.aaw5111.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wust S, Muller R, Hofmann S. Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater. 2011;2(3):119–54. https://doi.org/10.3390/jfb2030119.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Rider P, Kacarevic ZP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018;9:2041731418802090. https://doi.org/10.1177/2041731418802090.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Xia Z, Jin S, Ye K. Tissue and organ 3D bioprinting. SLAS Technol. 2018;23(4):301–14. https://doi.org/10.1177/2472630318760515.

    Article  PubMed  Google Scholar 

  109. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ‘Printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater. 2017;6(16). https://doi.org/10.1002/adhm.201700264.

  110. Dhawan A, Kennedy PM, Rizk EB, Ozbolat IT. Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery. J Am Acad Orthop Surg. 2019;27(5):e215–26. https://doi.org/10.5435/JAAOS-D-17-00632.

    Article  PubMed  Google Scholar 

  111. Keriquel V, Oliveira H, Remy M, Ziane S, Delmond S, Rousseau B, Rey S, Catros S, Amedee J, Guillemot F, Fricain JC. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. https://doi.org/10.1038/s41598-017-01914-x.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915–46. https://doi.org/10.1039/c7bm00765e.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011–28. https://doi.org/10.1002/adma.201302042.

    Article  PubMed  Google Scholar 

  114. Faramarzi N, Yazdi IK, Nabavinia M, Gemma A, Fanelli A, Caizzone A, Ptaszek LM, Sinha I, Khademhosseini A, Ruskin JN, Tamayol A. Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv Healthc Mater. 2018;7(11):e1701347. https://doi.org/10.1002/adhm.201701347.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater. 2017;29(46):1703443. https://doi.org/10.1002/adma.201703443.

    Article  Google Scholar 

  116. Masaeli E, Marquette C. Direct-write bioprinting approach to construct multilayer cellular tissues. Front Bioeng Biotechnol. 2019;7:478. https://doi.org/10.3389/fbioe.2019.00478.

    Article  PubMed  Google Scholar 

  117. Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC, Panoskaltsis-Mortari A. 3D bioprinted In vitro metastatic models via reconstruction of tumor microenvironments. Adv Mater. 2019;31(10):e1806899. https://doi.org/10.1002/adma.201806899.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hou S, Tiriac H, Sridharan BP, Scampavia L, Madoux F, Seldin J, Souza GR, Watson D, Tuveson D, Spicer TP. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov. 2018;23(6):574–84. https://doi.org/10.1177/2472555218766842.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ma Y, Ji Y, Huang G, Ling K, Zhang X, Xu F. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication. 2015;7(4):044105. https://doi.org/10.1088/1758-5090/7/4/044105.

    Article  PubMed  Google Scholar 

  120. Hou X, Liu S, Wang M, Wiraja C, Huang W, Chan P, Tan T, Xu C. Layer-by-layer 3D constructs of fibroblasts in hydrogel for examining transdermal penetration capability of nanoparticles. SLAS Technol. 2017;22(4):447–53. https://doi.org/10.1177/2211068216655753.

    Article  PubMed  Google Scholar 

  121. Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ-on-chip models: implications in drug discovery and clinical applications. J Cell Physiol. 2019;234(6):8352–80. https://doi.org/10.1002/jcp.27729.

    Article  PubMed  Google Scholar 

  122. Liu J, He J, Liu J, Ma X, Chen Q, Lawrence N, Zhu W, Xu Y, Chen S. Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting. 2019;13. https://doi.org/10.1016/j.bprint.2019.e00040.

  123. Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res. 2015;94(9 Suppl):143S–52S. https://doi.org/10.1177/0022034515588885.

    Article  PubMed  Google Scholar 

  124. Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019;116(2):452–68. https://doi.org/10.1002/bit.26882.

    Article  PubMed  Google Scholar 

  125. Smith EE, Zhang W, Schiele NR, Khademhosseini A, Kuo CK, Yelick PC. Developing a biomimetic tooth bud model. J Tissue Eng Regen Med. 2017;11(12):3326–36. https://doi.org/10.1002/term.2246.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Monteiro N, Smith EE, Angstadt S, Zhang W, Khademhosseini A, Yelick PC. Dental cell sheet biomimetic tooth bud model. Biomaterials. 2016;106:167–79. https://doi.org/10.1016/j.biomaterials.2016.08.024.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Khayat A, Monteiro N, Smith EE, Pagni S, Zhang W, Khademhosseini A, Yelick PC. GelMA-encapsulated hDPSCs and HUVECs for dental pulp regeneration. J Dent Res. 2017;96(2):192–9. https://doi.org/10.1177/0022034516682005.

    Article  PubMed  Google Scholar 

  128. Staples RJ, Ivanovski S, Vaquette C. Fibre guiding scaffolds for periodontal tissue engineering. J Periodontal Res. 2020;55(3):331–41. https://doi.org/10.1111/jre.12729.

    Article  PubMed  Google Scholar 

  129. Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res. 2014;93(12):1212–21. https://doi.org/10.1177/0022034514544301.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Vaquette C, Saifzadeh S, Farag A, Hutmacher DW, Ivanovski S. Periodontal tissue engineering with a multiphasic construct and cell sheets. J Dent Res. 2019;98(6):673–81. https://doi.org/10.1177/0022034519837967.

    Article  PubMed  Google Scholar 

  131. Vaquette C, Pilipchuk SP, Bartold PM, Hutmacher DW, Giannobile WV, Ivanovski S. Tissue engineered constructs for periodontal regeneration: current status and future perspectives. Adv Healthc Mater. 2018;7(21):e1800457. https://doi.org/10.1002/adhm.201800457.

    Article  PubMed  Google Scholar 

  132. Athirasala A, Tahayeri A, Thrivikraman G, Franca CM, Monteiro N, Tran V, Ferracane J, Bertassoni LE. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication. 2018;10(2):024101. https://doi.org/10.1088/1758-5090/aa9b4e.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sooppan R, Paulsen SJ, Han J, Ta AH, Dinh P, Gaffey AC, Venkataraman C, Trubelja A, Hung G, Miller JS, Atluri P. In vivo anastomosis and perfusion of a three-dimensionally-printed construct containing microchannel networks. Tissue Eng Part C Methods. 2016;22(1):1–7. https://doi.org/10.1089/ten.TEC.2015.0239.

    Article  PubMed  Google Scholar 

  134. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–74. https://doi.org/10.1038/nmat3357.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sachdeva GS, Sachdeva LT, Goel M, Bala S. Regenerative endodontic treatment of an immature tooth with a necrotic pulp and apical periodontitis using platelet-rich plasma (PRP) and mineral trioxide aggregate (MTA): a case report. Int Endod J. 2015;48(9):902–10. https://doi.org/10.1111/iej.12407.

    Article  PubMed  Google Scholar 

  136. Dhillon H, Kaushik M, Sharma R. Regenerative endodontics—creating new horizons. J Biomed Mater Res B Appl Biomater. 2016;104(4):676–85. https://doi.org/10.1002/jbm.b.33587.

    Article  PubMed  Google Scholar 

  137. Ono M, Oshima M, Ogawa M, Sonoyama W, Hara ES, Oida Y, Shinkawa S, Nakajima R, Mine A, Hayano S, Fukumoto S, Kasugai S, Yamaguchi A, Tsuji T, Kuboki T. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci Rep. 2017;7:44522. https://doi.org/10.1038/srep44522.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S, Saito M, Tsuji T. Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One. 2011;6(7):e21531. https://doi.org/10.1371/journal.pone.0021531.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Oshima M, Tsuji T. Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology. 2014;102(2):123–36. https://doi.org/10.1007/s10266-014-0168-z.

    Article  PubMed  Google Scholar 

  140. Tao O, Kort-Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA, Kinsella JM, Tran SD. The applications of 3D printing for craniofacial tissue engineering. Micromachines (Basel). 2019;10(7):140. https://doi.org/10.3390/mi10070480.

    Article  Google Scholar 

  141. Izumi K, Song J, Feinberg SE. Development of a tissue-engineered human oral mucosa: from the bench to the bed side. Cells Tissues Organs. 2004;176(1–3):134–52. https://doi.org/10.1159/000075034.

    Article  PubMed  Google Scholar 

  142. Feinberg SE, Aghaloo TL, Cunningham LL Jr. Role of tissue engineering in oral and maxillofacial reconstruction: findings of the 2005 AAOMS research summit. J Oral Maxillofac Surg. 2005;63(10):1418–25. https://doi.org/10.1016/j.joms.2005.07.004.

    Article  PubMed  Google Scholar 

  143. Hotta T, Yokoo S, Terashi H, Komori T. Clinical and histopathological analysis of healing process of intraoral reconstruction with ex vivo produced oral mucosa equivalent. Kobe J Med Sci. 2007;53(1–2):1–14.

    PubMed  Google Scholar 

  144. Urkasemsin G, Rungarunlert S, Ferreira JN. Bioprinting strategies for secretory epithelial organoids. Methods Mol Biol. 2020;2140:243–9. https://doi.org/10.1007/978-1-0716-0520-2_16.

    Article  PubMed  Google Scholar 

  145. Adine C, Ng KK, Rungarunlert S, Souza GR, Ferreira JN. Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials. 2018;180:52–66. https://doi.org/10.1016/j.biomaterials.2018.06.011.

    Article  PubMed  Google Scholar 

  146. Al-Hashimi I, Schifter M, Lockhart PB, Wray D, Brennan M, Migliorati CA, Axéll T, Bruce AJ, Carpenter W, Eisenberg E, Epstein JB, Holmstrup P, Jontell M, Lozada-Nur F, Nair R, Silverman B, Thongprasom K, Thornhill M, Warnakulasuriya S, van der Waal I. Oral lichen planus and Oral lichenoid lesions: diagnostic and therapeutic considerations. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont. 2007;103:S25.e21–12. https://doi.org/10.1016/j.tripleo.2006.11.001.

    Article  Google Scholar 

  147. Müller S. Oral lichenoid lesions: distinguishing the benign from the deadly. Mod Pathol. 2017;30(s1):S54–67. https://doi.org/10.1038/modpathol.2016.121.

    Article  PubMed  Google Scholar 

  148. Sugerman PB, Savage NW, Walsh LJ, Zhao ZZ, Zhou XJ, Khan A, Seymour GJ, Bigby M. The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med. 2002;13(4):350–65. https://doi.org/10.1177/154411130201300405.

    Article  PubMed  Google Scholar 

  149. Al-Hashimi I, Schifter M, Lockhart PB, Wray D, Brennan M, Migliorati CA, Axéll T, Bruce AJ, Carpenter W, Eisenberg E, Epstein JB, Holmstrup P, Jontell M, Lozada-Nur F, Nair R, Silverman B, Thongprasom K, Thornhill M, Warnakulasuriya S, van der Waal I. Oral lichen planus and oral lichenoid lesions: diagnostic and therapeutic considerations. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2007;103:S25.e21–12. https://doi.org/10.1016/j.tripleo.2006.11.001.

    Article  Google Scholar 

  150. Lodi G, Manfredi M, Mercadante V, Murphy R, Carrozzo M. Interventions for treating oral lichen planus: corticosteroid therapies. Cochrane Database Syst Rev. 2020;2:CD001168. https://doi.org/10.1002/14651858.CD001168.pub3.

    Article  PubMed  Google Scholar 

  151. Kalhori KAM, Vahdatinia F, Jamalpour MR, Vescovi P, Fornaini C, Merigo E, Fekrazad R. Photobiomodulation in oral medicine. Photobiomodul Photomed Laser Surg. 2019;37(12):837–61. https://doi.org/10.1089/photob.2019.4706.

    Article  PubMed  Google Scholar 

  152. Cafaro A, Arduino PG, Massolini G, Romagnoli E, Broccoletti R. Clinical evaluation of the efficiency of low-level laser therapy for oral lichen planus: a prospective case series. Lasers Med Sci. 2014;29(1):185–90. https://doi.org/10.1007/s10103-013-1313-6.

    Article  PubMed  Google Scholar 

  153. Trehan M, Taylor CR. Low-dose excimer 308-nm laser for the treatment of oral lichen planus. Arch Dermatol. 2004;140(4):415–20. https://doi.org/10.1001/archderm.140.4.415.

    Article  PubMed  Google Scholar 

  154. Jajarm HH, Falaki F, Mahdavi O. A comparative pilot study of low intensity laser versus topical corticosteroids in the treatment of erosive-atrophic oral lichen planus. Photomed Laser Surg. 2011;29(6):421–5. https://doi.org/10.1089/pho.2010.2876.

    Article  PubMed  Google Scholar 

  155. Kazancioglu HO, Erisen M. Comparison of low-level laser therapy versus ozone therapy in the treatment of oral lichen Planus. Ann Dermatol. 2015;27(5):485–91. https://doi.org/10.5021/ad.2015.27.5.485.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Mirza S, Rehman N, Alrahlah A, Alamri WR, Vohra F. Efficacy of photodynamic therapy or low level laser therapy against steroid therapy in the treatment of erosive-atrophic oral lichen planus. Photodiagn Photodyn Ther. 2018;21:404–8. https://doi.org/10.1016/j.pdpdt.2018.02.001.

    Article  Google Scholar 

  157. Pavan Kumar B, Ram Mohan S, Mohan AP, Jeevan Kumar KA, Yashwanth Yadav B. Versatility of pleuripotent undifferentiated stem cells aspirated from bone marrow and its applications in oral and maxillofacial surgery. J Maxillofac Oral Surg. 2016;15(1):1–11. https://doi.org/10.1007/s12663-015-0793-2.

    Article  PubMed  Google Scholar 

  158. Yamada Y, Nakamura-Yamada S, Konoki R, Baba S. Promising advances in clinical trials of dental tissue-derived cell-based regenerative medicine. Stem Cell Res Ther. 2020;11(1):175. https://doi.org/10.1186/s13287-020-01683-x.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Yamada Y, Nakamura-Yamada S, Kusano K, Baba S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: a concise review. IJMS. 2019;20(5):1132. https://doi.org/10.3390/ijms20051132.

    Article  PubMed Central  Google Scholar 

  160. Li Z, Jiang CM, An S, Cheng Q, Huang YF, Wang YT, Gou YC, Xiao L, Yu WJ, Wang J. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis. 2014;20(1):25–34. https://doi.org/10.1111/odi.12086.

    Article  PubMed  Google Scholar 

  161. Ullah I, Choe Y-h, Khan M, Bharti D, Shivakumar SB, Lee H-J, Son Y-B, Shin Y, Lee S-L, Park B-W, Ock S-A, Rho G-J. Dental pulp-derived stem cells can counterbalance peripheral nerve injury-induced oxidative stress and supraspinal neuro-inflammation in rat brain. Science. 2018;8(1):15795. https://doi.org/10.1038/s41598-018-34151-x.

    Article  Google Scholar 

  162. Omi M, Hata M, Nakamura N, Miyabe M, Kobayashi Y, Kamiya H, Nakamura J, Ozawa S, Tanaka Y, Takebe J, Matsubara T, Naruse K. Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy. J Diabet Investig. 2016;7(4):485–96. https://doi.org/10.1111/jdi.12452.

    Article  Google Scholar 

  163. Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, Matsushita K. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017;8(1):61. https://doi.org/10.1186/s13287-017-0506-5.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhang Z, Han Y, Song J, Luo R, Jin X, Mu D, Su S, Ji X, Ren Y-F, Liu H. Interferon-γ regulates the function of mesenchymal stem cells from oral lichen planus via indoleamine 2,3-dioxygenase activity. J Oral Pathol Med. 2015;44(1):15–27. https://doi.org/10.1111/jop.12224.

    Article  PubMed  Google Scholar 

  165. Arzi B, Clark KC, Sundaram A, Spriet M, Verstraete FJM, Walker NJ, Loscar MR, Fazel N, Murphy WJ, Vapniarsky N, Borjesson DL. Therapeutic efficacy of fresh, allogeneic mesenchymal stem cells for severe refractory feline chronic gingivostomatitis. Stem Cells Transl Med. 2017;6(8):1710–22. https://doi.org/10.1002/sctm.17-0035.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Arzi B, Mills-Ko E, Verstraete FJ, Kol A, Walker NJ, Badgley MR, Fazel N, Murphy WJ, Vapniarsky N, Borjesson DL. Therapeutic efficacy of fresh, autologous mesenchymal stem cells for severe refractory gingivostomatitis in cats. Stem Cells Transl Med. 2016;5(1):75–86. https://doi.org/10.5966/sctm.2015-0127.

    Article  PubMed  Google Scholar 

  167. Kramer IR, Lucas RB, Pindborg JJ, Sobin LH. Definition of leukoplakia and related lesions: an aid to studies on oral precancer. Oral Surg Oral Med Oral Pathol. 1978;46(4):518–39.

    Article  PubMed  Google Scholar 

  168. Pindborg JJRP, Smith CJ, van der Waal I. World Health Organization International histological classification of tumours. Histological typing of cancer and precancer of the oral mucosa. 2nd ed. Heidelberg: Springer; 1997. p. 1–85.

    Book  Google Scholar 

  169. Warnakulasuriya S, Johnson NW, van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007;36(10):575–80. https://doi.org/10.1111/j.1600-0714.2007.00582.x.

    Article  PubMed  Google Scholar 

  170. Mello FW, Miguel AFP, Dutra KL, Porporatti AL, Warnakulasuriya S, Guerra ENS, Rivero ERC. Prevalence of oral potentially malignant disorders: a systematic review and meta-analysis. J Oral Pathol Med. 2018;47(7):633–40. https://doi.org/10.1111/jop.12726.

    Article  PubMed  Google Scholar 

  171. Speight PM, Khurram SA, Kujan O. Oral potentially malignant disorders: risk of progression to malignancy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(6):612–27. https://doi.org/10.1016/j.oooo.2017.12.011.

    Article  PubMed  Google Scholar 

  172. Dost F, Le Cao KA, Ford PJ, Farah CS. A retrospective analysis of clinical features of oral malignant and potentially malignant disorders with and without oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(6):725–33. https://doi.org/10.1016/j.oooo.2013.08.005.

    Article  PubMed  Google Scholar 

  173. El-Naggar AK, Chan JKC, Takata T, Grandis JR, Slootweg PJ. The fourth edition of the head and neck World Health Organization blue book: editors’ perspectives. Hum Pathol. 2017;66:10–2. https://doi.org/10.1016/j.humpath.2017.05.014.

    Article  PubMed  Google Scholar 

  174. de Farias Gabriel A, Wagner VP, Correa C, Webber LP, Pilar EFS, Curra M, Carrard VC, Martins MAT, Martins MD. Photobiomodulation therapy modulates epigenetic events and NF-κB expression in oral epithelial wound healing. Lasers Med Sci. 2019;34(7):1465–72. https://doi.org/10.1007/s10103-019-02745-0.

    Article  PubMed  Google Scholar 

  175. Pellicioli AC, Martins MD, Dillenburg CS, Marques MM, Squarize CH, Castilho RM. Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. J Biomed Opt. 2014;19(2):028002. https://doi.org/10.1117/1.JBO.19.2.028002.

    Article  PubMed  Google Scholar 

  176. Wagner VP, Curra M, Webber LP, Nor C, Matte U, Meurer L, Martins MD. Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats. Lasers Med Sci. 2016;31(4):665–71. https://doi.org/10.1007/s10103-016-1904-0.

    Article  PubMed  Google Scholar 

  177. Jagtap B, Bhate K, Santhoshkumar SN. Low level laser therapy reduces oral leukoplakia lesion size: results from a preliminary study. Oral Oncol. 2018;85:108–9. https://doi.org/10.1016/j.oraloncology.2018.08.002.

    Article  PubMed  Google Scholar 

  178. Ribeiro AS, de Aguiar MCF, do Carmo MAV, de Abreu MHNG, Silva TA, Mesquita RA. 660 AsGaAl laser to alleviate pain caused by cryosurgical treatment of oral leukoplakia: a preliminary study. Photomed Laser Surg. 2011;29(5):345–50. https://doi.org/10.1089/pho.2010.2824.

    Article  PubMed  Google Scholar 

  179. Utomo DN, Mahyudin F, Hernugrahanto KD, Suroto H, Chilmi MZ, Rantam FA. Implantation of platelet rich fibrin and allogenic mesenchymal stem cells facilitate the healing of muscle injury: an experimental study on animal. Int J Surg Open. 2018;11:4–9. https://doi.org/10.1016/j.ijso.2018.03.001.

    Article  Google Scholar 

  180. Mahajan M, Gupta MK, Bande C, Meshram V. Comparative evaluation of healing pattern after surgical excision of oral mucosal lesions by using platelet-rich fibrin (PRF) membrane and collagen membrane as grafting materials—a randomized clinical trial. J Oral Maxillofac Surg. 2018;76(7):1469.e1461–9. https://doi.org/10.1016/j.joms.2018.02.031.

    Article  Google Scholar 

  181. Kasai Y, Takagi R, Kobayashi S, Owaki T, Yamaguchi N, Fukuda H, Sakai Y, Sumita Y, Kanai N, Isomoto H, Kanetaka K, Ohki T, Asahina I, Nagai K, Nakao K, Takeda N, Okano T, Eguchi S, Yamato M. A stable protocol for the fabrication of transplantable human oral mucosal epithelial cell sheets for clinical application. Regenerat Therapy. 2020;14:87–94. https://doi.org/10.1016/j.reth.2019.11.007.

    Article  Google Scholar 

  182. Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, Okano T, Takasaki K. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2006;55(12):1704–10. https://doi.org/10.1136/gut.2005.088518.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, Sasaki R, Namiki H, Okano T, Yamamoto M. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology. 2012;143(3):582–588.e582. https://doi.org/10.1053/j.gastro.2012.04.050.

    Article  PubMed  Google Scholar 

  184. Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, Damour O. Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci. 2012;53(3):1325–31. https://doi.org/10.1167/iovs.11-7744.

    Article  PubMed  Google Scholar 

  185. Li W, Han Y, Zhao Z, Ji X, Wang X, Jin J, Wang Q, Guo X, Cheng Z, Lu M, Wang G, Wang Y, Liu H. Oral mucosal mesenchymal stem cell-derived exosomes: a potential therapeutic target in oral premalignant lesions. Int J Oncol. 2019;54(5):1567–78. https://doi.org/10.3892/ijo.2019.4756.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Zhang Z, Song J, Han Y, Mu D, Su S, Ji X, Liu H. Impairment of mesenchymal stem cells derived from oral leukoplakia. Int J Clin Exp Pathol. 2015;8(9):10026–37.

    PubMed  PubMed Central  Google Scholar 

  187. Bruna F, Plaza A, Arango M, Espinoza I, Conget P. Systemically administered allogeneic mesenchymal stem cells do not aggravate the progression of precancerous lesions: a new biosafety insight. Stem Cell Res Ther. 2018;9(1):137. https://doi.org/10.1186/s13287-018-0878-1.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Chen Y, Wang X, Fang J, Song J, Ma D, Luo L, He B, Xia J, Lui VWY, Cheng B, Wang Z. Mesenchymal stem cells participate in oral mucosa carcinogenesis by regulating T cell proliferation. Clin Immunol. 2019;198:46–53. https://doi.org/10.1016/j.clim.2018.12.001.

    Article  PubMed  Google Scholar 

  189. Bakhshinyan D, Adile AA, Qazi MA, Singh M, Kameda-Smith MM, Yelle N, Chokshi C, Venugopal C, Singh SK. Introduction to cancer stem cells: past, present, and future. Methods Mol Biol. 2018;1692:1–16. https://doi.org/10.1007/978-1-4939-7401-6_1.

    Article  PubMed  Google Scholar 

  190. Major AG, Pitty LP, Farah CS. Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cells Int. 2013;2013:319489. https://doi.org/10.1155/2013/319489.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells. 2015;7(9):1150–84. https://doi.org/10.4252/wjsc.v7.i9.1150.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Surendran S, Siddappa G, Mohan A, Hicks W Jr, Jayaprakash V, Mimikos C, Mahri M, Almarzouki F, Morrell K, Ravi R, Govindan S, Sushma CN, Raghavan N, Birur P, Ilayaraja J, Merzianu M, Reid M, Suresh A, Kuriakose MA. Cancer stem cell and its niche in malignant progression of oral potentially malignant disorders. Oral Oncol. 2017;75:140–7. https://doi.org/10.1016/j.oraloncology.2017.11.003.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Ravindran G, Devaraj H. Aberrant expression of CD133 and musashi-1 in preneoplastic and neoplastic human oral squamous epithelium and their correlation with clinicopathological factors. Head Neck. 2012;34(8):1129–35. https://doi.org/10.1002/hed.21896.

    Article  PubMed  Google Scholar 

  194. Sun L, Feng J, Ma L, Liu W, Zhou Z. CD133 expression in oral lichen planus correlated with the risk for progression to oral squamous cell carcinoma. Ann Diagn Pathol. 2013;17(6):486–9. https://doi.org/10.1016/j.anndiagpath.2013.06.004.

    Article  PubMed  Google Scholar 

  195. Saintigny P, William WN Jr, Foy JP, Papadimitrakopoulou V, Lang W, Zhang L, Fan YH, Feng L, Kim ES, El-Naggar AK, Lee JJ, Mao L, Hong WK, Lingen MW, Lippman SM. Met receptor tyrosine kinase and chemoprevention of oral cancer. J Natl Cancer Inst. 2018;110(3):250–7. https://doi.org/10.1093/jnci/djx186.

    Article  Google Scholar 

  196. Bazarsad S, Zhang X, Kim KY, Illeperuma R, Jayasinghe RD, Tilakaratne WM, Kim J. Identification of a combined biomarker for malignant transformation in oral submucous fibrosis. J Oral Pathol Med. 2017;46(6):431–8. https://doi.org/10.1111/jop.12483.

    Article  PubMed  Google Scholar 

  197. Dalley AJ, Pitty LP, Major AG, Abdulmajeed AA, Farah CS. Expression of ABCG2 and Bmi-1 in oral potentially malignant lesions and oral squamous cell carcinoma. Cancer Med. 2014;3(2):273–83. https://doi.org/10.1002/cam4.182.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Liu W, Feng JQ, Shen XM, Wang HY, Liu Y, Zhou ZT. Two stem cell markers, ATP-binding cassette, G2 subfamily (ABCG2) and BMI-1, predict the transformation of oral leukoplakia to cancer: a long-term follow-up study. Cancer. 2012;118(6):1693–700. https://doi.org/10.1002/cncr.26483.

    Article  PubMed  Google Scholar 

  199. de Vicente JC, Rodrigo JP, Rodriguez-Santamarta T, Lequerica-Fernandez P, Allonca E, Garcia-Pedrero JM. Podoplanin expression in oral leukoplakia: tumorigenic role. Oral Oncol. 2013;49(6):598–603. https://doi.org/10.1016/j.oraloncology.2013.02.008.

    Article  PubMed  Google Scholar 

  200. Gissi DB, Gabusi A, Tarsitano A, Luccarini L, Morandi L, Montebugnoli L. Podoplanin expression as a predictive marker of dysplasia in oral leukoplakia. J Craniomaxillofac Surg. 2018;46(5):759–64. https://doi.org/10.1016/j.jcms.2018.02.016.

    Article  PubMed  Google Scholar 

  201. Habiba U, Hida K, Kitamura T, Matsuda AY, Higashino F, Ito YM, Ohiro Y, Totsuka Y, Shindoh M. ALDH1 and podoplanin expression patterns predict the risk of malignant transformation in oral leukoplakia. Oncol Lett. 2017;13(1):321–8. https://doi.org/10.3892/ol.2016.5379.

    Article  PubMed  Google Scholar 

  202. Kreppel M, Kreppel B, Drebber U, Wedemayer I, Rothamel D, Zoller JE, Scheer M. Podoplanin expression in oral leukoplakia: prognostic value and clinicopathological implications. Oral Dis. 2012;18(7):692–9. https://doi.org/10.1111/j.1601-0825.2012.01927.x.

    Article  PubMed  Google Scholar 

  203. Liu W, Wu L, Shen XM, Shi LJ, Zhang CP, Xu LQ, Zhou ZT. Expression patterns of cancer stem cell markers ALDH1 and CD133 correlate with a high risk of malignant transformation of oral leukoplakia. Int J Cancer. 2013;132(4):868–74. https://doi.org/10.1002/ijc.27720.

    Article  PubMed  Google Scholar 

  204. Dalley AJ, Abdul Majeed AA, Pitty LP, Major AG, Farah CS. LGR5 expression in oral epithelial dysplasia and oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(4):436–40. e431. https://doi.org/10.1016/j.oooo.2014.11.014.

    Article  PubMed  Google Scholar 

  205. Luiz ST, Modolo F, Mozzer I, Dos Santos EC, Nagashima S, Camargo Martins AP, de Azevedo MLV, Azevedo Alanis LR, Hardy A, de Moraes RS, Aguiar MCF, Ignacio SA, Jham BC, Noronha L, Johann A. Immunoexpression of SOX-2 in oral leukoplakia. Oral Dis. 2018;24(8):1449–57. https://doi.org/10.1111/odi.12922.

    Article  PubMed  Google Scholar 

  206. Qiao B, He B, Cai J, Yang W. The expression profile of Oct4 and Sox2 in the carcinogenesis of oral mucosa. Int J Clin Exp Pathol. 2014;7(1):28–37.

    PubMed  Google Scholar 

  207. Vijayakumar G, Narwal A, Kamboj M, Sen R. Association of SOX2, OCT4 and WNT5A expression in oral epithelial dysplasia and oral squamous cell carcinoma: an immunohistochemical study. Head Neck Pathol. 2020;14:749–57. https://doi.org/10.1007/s12105-019-01114-1.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Paparella ML, Abrigo M, Bal de Kier Joffe E, Raimondi AR. Oral-specific ablation of Klf4 disrupts epithelial terminal differentiation and increases premalignant lesions and carcinomas upon chemical carcinogenesis. J Oral Pathol Med. 2015;44(10):801–9. https://doi.org/10.1111/jop.12307.

    Article  PubMed  Google Scholar 

  209. Papakosta V, Vairaktaris E, Vylliotis A, Derka S, Nkenke E, Vassiliou S, Lazaris A, Mourouzis C, Rallis G, Spyridonidou S, Anagnostopoulou S, Perrea D, Donta I, Yapijakis C, Patsouris E. The co-expression of c-myc and p53 increases and reaches a plateau early in oral oncogenesis. Anticancer Res. 2006;26(4B):2957–62.

    PubMed  Google Scholar 

  210. Gokulan R, Halagowder D. Expression pattern of notch intracellular domain (NICD) and Hes-1 in preneoplastic and neoplastic human Oral squamous epithelium: their correlation with c-Myc, clinicopathological factors and prognosis in oral cancer. Med Oncol. 2014;31(8):126. https://doi.org/10.1007/s12032-014-0126-1.

    Article  PubMed  Google Scholar 

  211. Pallavi N, Nalabolu GRK, Hiremath SKS. Bcl-2 and c-Myc expression in oral dysplasia and oral squamous cell carcinoma: An immunohistochemical study to assess tumor progression. J Oral Maxillofac Pathol. 2018;22(3):325–31. https://doi.org/10.4103/jomfp.JOMFP_197_18.

    Article  PubMed  PubMed Central  Google Scholar 

  212. de Vicente JC, Rodriguez-Santamarta T, Rodrigo JP, Allonca E, Vallina A, Singhania A, Donate-Perez Del Molino P, Garcia-Pedrero JM. The emerging role of NANOG as an early cancer risk biomarker in patients with oral potentially malignant disorders. J Clin Med. 2019;8(9):1376. https://doi.org/10.3390/jcm8091376.

    Article  PubMed Central  Google Scholar 

  213. Ling C, Li Q, Brown ME, Kishimoto Y, Toya Y, Devine EE, Choi K-O, Nishimoto K, Norman IG, Tsegyal T, Jiang JJ, Burlingham WJ, Gunasekaran S, Smith LM, Frey BL, Welham NV. Bioengineered vocal fold mucosa for voice restoration. Sci Transl Med. 2015;7(314):314ra187. https://doi.org/10.1126/scitranslmed.aab4014.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Fukahori M, Chitose S-I, Sato K, Sueyoshi S, Kurita T, Umeno H, Monden Y, Yamakawa R. Regeneration of vocal fold mucosa using tissue-engineered structures with oral mucosal cells. PLoS One. 2016;11(1):e0146151. https://doi.org/10.1371/journal.pone.0146151.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Machino R, Matsumoto K, Taniguchi D, Tsuchiya T, Takeoka Y, Taura Y, Moriyama M, Tetsuo T, Oyama S, Takagi K, Miyazaki T, Hatachi G, Doi R, Shimoyama K, Matsuo N, Yamasaki N, Nakayama K, Nagayasu T. Replacement of rat tracheas by layered, trachea-like, scaffold-free structures of human cells using a bio-3D printing system. Adv Healthc Mater. 2019;8(7):e1800983. https://doi.org/10.1002/adhm.201800983.

    Article  PubMed  Google Scholar 

  216. Taniguchi D, Matsumoto K, Tsuchiya T, Machino R, Takeoka Y, Elgalad A, Gunge K, Takagi K, Taura Y, Hatachi G, Matsuo N, Yamasaki N, Nakayama K, Nagayasu T. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact Cardiovasc Thorac Surg. 2018;26(5):745–52. https://doi.org/10.1093/icvts/ivx444.

    Article  PubMed  Google Scholar 

  217. Takeoka Y, Matsumoto K, Taniguchi D, Tsuchiya T, Maachino R, Moriyama M, Oyama S, Tetsuo T, Taura Y, Takagi K, Yoshida T, Elgalad A, Matsuo N, Kunizaki M, Tobinaga S, Nonaka T, Hidaka S, Yamasaki N, Nakayama K, Nagayasu T. Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing. PLoS One. 2019;14(3):e0211339. https://doi.org/10.1371/journal.pone.0211339.

  218. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31(2):108–15. https://doi.org/10.1016/j.tibtech.2012.12.003.

    Article  PubMed  Google Scholar 

  219. Gu BK, Choi DJ, Park SJ, Kim YJ, Kim CH. 3D bioprinting technologies for tissue engineering applications. Adv Exp Med Biol. 2018;1078:15–28. https://doi.org/10.1007/978-981-13-0950-2_2.

    Article  PubMed  Google Scholar 

  220. Harrison RK. Phase II and phase III failures: 2013-2015. Nat Rev Drug Discov. 2016;15(12):817–8. https://doi.org/10.1038/nrd.2016.184.

    Article  PubMed  Google Scholar 

  221. Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. EMBO J. 2019;38(15):e101654. https://doi.org/10.15252/embj.2019101654.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Yang L, Yang S, Li X, Li B, Li Y, Zhang X, Ma Y, Peng X, Jin H, Fan Q, Wei S, Liu J, Li H. Tumor organoids: from inception to future in cancer research. Cancer Lett. 2019;454:120–33. https://doi.org/10.1016/j.canlet.2019.04.005.

    Article  PubMed  Google Scholar 

  223. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5. https://doi.org/10.1038/nature07935.

    Article  PubMed  Google Scholar 

  224. Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM, Devriese LA, de Bree R, de Ruiter EJ, Korving J, Begthel H, van Es JH, Geurts V, He G-W, van Jaarsveld RH, Oka R, Muraro MJ, Vivié J, Zandvliet MMJM, Hendrickx APA, Iakobachvili N, Sridevi P, Kranenburg O, van Boxtel R, Kops GJPL, Tuveson DA, Peters PJ, van Oudenaarden A, Clevers H. Oral mucosal organoids as a potential platform for personalized Cancer therapy. Cancer Discov. 2019;9(7):852–71. https://doi.org/10.1158/2159-8290.CD-18-1522.

    Article  PubMed  Google Scholar 

  225. Driehuis E, Oosterom N, Heil SG, Muller IB, Lin M, Kolders S, Jansen G, de Jonge R, Pieters R, Clevers H, van den Heuvel-Eibrink MM. Patient-derived oral mucosa organoids as an in vitro model for methotrexate induced toxicity in pediatric acute lymphoblastic leukemia. PLoS One. 2020;15(5):e0237488. https://doi.org/10.1371/journal.pone.0231588.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Sasai Y, Eiraku M, Suga H. In vitro organogenesis in three dimensions: self-organising stem cells. Development. 2012;139(22):4111–21. https://doi.org/10.1242/dev.079590.

    Article  PubMed  Google Scholar 

  227. Tanaka N, Osman AA, Takahashi Y, Lindemann A, Patel AA, Zhao M, Takahashi H, Myers JN. Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol. 2018;87:49–57. https://doi.org/10.1016/j.oraloncology.2018.10.018.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Driehuis E, Spelier S, Beltrán Hernández I, de Bree R, M Willems S, Clevers H, Oliveira S. Patient-derived head and neck cancer organoids recapitulate EGFR expression levels of respective tissues and are responsive to EGFR-targeted photodynamic therapy. J Clin Med. 2019;8(11):1880. https://doi.org/10.3390/jcm8111880.

    Article  PubMed Central  Google Scholar 

  229. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409.

    Article  PubMed  Google Scholar 

  230. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, Vinarsky V, Cho JL, Breton S, Sahay A, Medoff BD, Rajagopal J. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 2013;503(7475):218–23. https://doi.org/10.1038/nature12777.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. PNAS. 2011;108(19):7950–5. https://doi.org/10.1073/pnas.1102454108.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Ischenko I, Zhi J, Moll UM, Nemajerova A, Petrenko O. Direct reprogramming by oncogenic Ras and Myc. PNAS. 2013;110(10):3937–42. https://doi.org/10.1073/pnas.1219592110.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Huang SD, Yuan Y, Tang H, Liu XH, Fu CG, Cheng HZ, Bi JW, Yu YW, Gong DJ, Zhang W, Chen J, Xu ZY. Tumor cells positive and negative for the common cancer stem cell markers are capable of initiating tumor growth and generating both progenies. PLoS One. 2013;8(1):e54579. https://doi.org/10.1371/journal.pone.0054579.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. PNAS. 2007;104(3):973–8. https://doi.org/10.1073/pnas.0610117104.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Lee J, Park M, Ko Y, Kim B, Kim O, Hyun H, Kim D, Sohn H, Moon YL, Lim W. Ectopic overexpression of CD133 in HNSCC makes it resistant to commonly used chemotherapeutics. Tumour Biol. 2017;39(4):1010428317695534. https://doi.org/10.1177/1010428317695534.

    Article  PubMed  Google Scholar 

  236. Wu Y, Zhang Y, Niu M, Shi Y, Liu H, Yang D, Li F, Lu Y, Bo Y, Zhang R, Li Z, Luo H, Cui J, Sang J, Xiang C, Gao W, Wen S. Whole-transcriptome analysis of CD133+CD144+ cancer stem cells derived from human laryngeal squamous cell carcinoma cells. Cell Physiol Biochem. 2018;47(4):1696–710. https://doi.org/10.1159/000490992.

    Article  PubMed  Google Scholar 

  237. Martens-de Kemp SR, Brink A, Stigter-van Walsum M, Damen JMA, Rustenburg F, Wu T, van Wieringen WN, Schuurhuis GJ, Braakhuis BJM, Slijper M, Brakenhoff RH. CD98 marks a subpopulation of head and neck squamous cell carcinoma cells with stem cell properties. Stem Cell Res. 2013;10(3):477–88. https://doi.org/10.1016/j.scr.2013.02.004.

    Article  PubMed  Google Scholar 

  238. Fukusumi T, Ishii H, Konno M, Yasui T, Nakahara S, Takenaka Y, Yamamoto Y, Nishikawa S, Kano Y, Ogawa H, Hasegawa S, Hamabe A, Haraguchi N, Doki Y, Mori M, Inohara H. CD10 as a novel marker of therapeutic resistance and cancer stem cells in head and neck squamous cell carcinoma. Br J Cancer. 2014;111(3):506–14. https://doi.org/10.1038/bjc.2014.289.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, Wicha MS, Prince ME. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck. 2010;32(9):1195–201. https://doi.org/10.1002/hed.21315.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Curtarelli RB, Gonçalves JM, Dos Santos LGP, Savi MG, Nör JE, Mezzomo LAM, Rodríguez Cordeiro MM. Expression of cancer stem cell biomarkers in human head and neck carcinomas: a systematic review. Stem Cell Rev Rep. 2018;14(6):769–84. https://doi.org/10.1007/s12015-018-9839-4.

    Article  PubMed  Google Scholar 

  241. Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol. 2016;11:47–76. https://doi.org/10.1146/annurev-pathol-012615-044438.

    Article  PubMed  Google Scholar 

  242. Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033–43. https://doi.org/10.5966/sctm.2015-0048.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Lin J-T, Chang T-H, Chang C-S, Wang W-H, Su B-W, Lee K-D, Chang P-J. Prognostic value of pretreatment CD44 mRNA in peripheral blood of patients with locally advanced head and neck cancer. Oral Oncol. 2010;46(5):e29–33. https://doi.org/10.1016/j.oraloncology.2010.02.011.

    Article  PubMed  Google Scholar 

  244. Kokko L-L, Hurme S, Maula S-M, Alanen K, Grénman R, Kinnunen I, Ventelä S. Significance of site-specific prognosis of cancer stem cell marker CD44 in head and neck squamous-cell carcinoma. Oral Oncol. 2011;47(6):510–6. https://doi.org/10.1016/j.oraloncology.2011.03.026.

    Article  PubMed  Google Scholar 

  245. Chen J, Zhou J, Lu J, Xiong H, Shi X, Gong L. Significance of CD44 expression in head and neck cancer: a systemic review and meta-analysis. BMC Cancer. 2014;14:15. https://doi.org/10.1186/1471-2407-14-15.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Qian X, Nie X, Wollenberg B, Sudhoff H, Kaufmann AM, Albers AE. Heterogeneity of head and neck squamous cell carcinoma stem cells. Adv Exp Med Biol. 2019;1139:23–40. https://doi.org/10.1007/978-3-030-14366-4_2.

    Article  PubMed  Google Scholar 

  247. Brower V. Cancer stem cell hypothesis evolves with emerging research. JNCI. 2016;108(5):djw139. https://doi.org/10.1093/jnci/djw139.

    Article  PubMed  Google Scholar 

  248. Kulsum S, Sudheendra HV, Pandian R, Ravindra DR, Siddappa G, R N, Chevour P, Ramachandran B, Sagar M, Jayaprakash A, Mehta A, Kekatpure V, Hedne N, Kuriakose MA, Suresh A. Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Mol Carcinog. 2017;56(2):694–711. https://doi.org/10.1002/mc.22526.

    Article  PubMed  Google Scholar 

  249. Chen D, Wu M, Li Y, Chang I, Yuan Q, Ekimyan-Salvo M, Deng P, Yu B, Yu Y, Dong J, Szymanski JM, Ramadoss S, Li J, Wang C-Y. Targeting BMI1+ cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell. 2017;20(5):621–634.e626. https://doi.org/10.1016/j.stem.2017.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Hu J, Mirshahidi S, Simental A, Lee SC, De Andrade Filho PA, Peterson NR, Duerksen-Hughes P, Yuan X. Cancer stem cell self-renewal as a therapeutic target in human oral cancer. Oncogene. 2019;38(27):5440–56. https://doi.org/10.1038/s41388-019-0800-z.

    Article  PubMed  Google Scholar 

  251. Wang J, Ji H, Zhu Q, Yu X, Du J, Jiang Z. Co-inhibition of BMI1 and Mel18 enhances chemosensitivity of esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett. 2019;17(6):5012–22. https://doi.org/10.3892/ol.2019.10160.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Sun H-R, Wang S, Yan S-C, Zhang Y, Nelson PJ, Jia H-L, Qin L-X, Dong Q-Z. Therapeutic strategies targeting cancer stem cells and their microenvironment. Front Oncol. 2019;9:1104. https://doi.org/10.3389/fonc.2019.01104.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Zhang Z, Dong Z, Lauxen IS, Filho MS, Nor JE. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res. 2014;74(10):2869–81. https://doi.org/10.1158/0008-5472.CAN-13-2032.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Xu Q, Zhang Q, Ishida Y, Hajjar S, Tang X, Shi H, Dang CV, Le AD. EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect. Oncotarget. 2017;8(6):9557–71. https://doi.org/10.18632/oncotarget.13771.

    Article  PubMed  Google Scholar 

  255. Le PN, Keysar SB, Miller B, Eagles JR, Chimed T-S, Reisinger J, Gomez KE, Nieto C, Jackson BC, Somerset HL, Morton JJ, Wang X-J, Jimeno A. Wnt signaling dynamics in head and neck squamous cell cancer tumor-stroma interactions. Mol Carcinog. 2019;58(3):398–410. https://doi.org/10.1002/mc.22937.

    Article  PubMed  Google Scholar 

  256. Lee SH, Koo BS, Kim JM, Huang S, Rho YS, Bae WJ, Kang HJ, Kim YS, Moon JH, Lim YC. Wnt/β-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol. 2014;234(1):99–107. https://doi.org/10.1002/path.4383.

    Article  PubMed  Google Scholar 

  257. Yu B, Wu K, Wang X, Zhang J, Wang L, Jiang Y, Zhu X, Chen W, Yan M. Periostin secreted by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein tyrosine kinase 7. Cell Death Dis. 2018;9(11):1082. https://doi.org/10.1038/s41419-018-1116-6.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Leong HS, Chong FT, Sew PH, Lau DP, Wong BH, Teh BT, Tan DS, Iyer NG. Targeting cancer stem cell plasticity through modulation of epidermal growth factor and insulin-like growth factor receptor signaling in head and neck squamous cell cancer. Stem Cells Transl Med. 2014;3(9):1055–65. https://doi.org/10.5966/sctm.2013-0214.

    Article  PubMed  PubMed Central  Google Scholar 

  259. de Almeida Pdel V, Grégio AM, Machado MA, de Lima AA, Azevedo LR. Saliva composition and functions: a comprehensive review. J Contemp Dent Pract. 2008;9(3):72–80.

    Article  PubMed  Google Scholar 

  260. Dost F, Farah CS. Stimulating the discussion on saliva substitutes: a clinical perspective. Aust Dent J. 2013;58(1):11–7. https://doi.org/10.1111/adj.12023.

    Article  PubMed  Google Scholar 

  261. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3(4):e2063. https://doi.org/10.1371/journal.pone.0002063.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Coppes RP, Stokman MA. Stem cells and the repair of radiation-induced salivary gland damage. Oral Dis. 2011;17(2):143–53. https://doi.org/10.1111/j.1601-0825.2010.01723.x.

    Article  PubMed  Google Scholar 

  263. Tran SD, Liu Y, Xia D, Maria OM, Khalili S, Wang RW, Quan VH, Hu S, Seuntjens J. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS One. 2013;8(4):e61632. https://doi.org/10.1371/journal.pone.0061632.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Lim JY, Yi T, Choi JS, Jang YH, Lee S, Kim HJ, Song SU, Kim YM. Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncol. 2013;49(2):136–43. https://doi.org/10.1016/j.oraloncology.2012.08.010.

    Article  PubMed  Google Scholar 

  265. Aframian DJ, Palmon A, Nahlieli O. Future therapy strategies for salivary gland impairment. Refuat Hapeh Vehashinayim. 2004;21(3):43–50. 93

    Google Scholar 

  266. Cantara SI, Soscia DA, Sequeira SJ, Jean-Gilles RP, Castracane J, Larsen M. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity. Biomaterials. 2012;33(33):8372–82. https://doi.org/10.1016/j.biomaterials.2012.08.021.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Pradhan-Bhatt S, Harrington DA, Duncan RL, Jia X, Witt RL, Farach-Carson MC. Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters. Tissue Eng Part A. 2013;19(13–14):1610–20. https://doi.org/10.1089/ten.TEA.2012.0301.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Urkasemsin G, Ferreira JN. Unveiling stem cell heterogeneity toward the development of salivary gland regenerative strategies. Adv Exp Med Biol. 2019;1123:151–64. https://doi.org/10.1007/978-3-030-11096-3_9.

    Article  PubMed  Google Scholar 

  269. Wu D, Chapela P, Farach-Carson MC. Reassembly of functional human stem/progenitor cells in 3D culture. Methods Mol Biol. 2018;1817:19–32. https://doi.org/10.1007/978-1-4939-8600-2_3.

    Article  PubMed  Google Scholar 

  270. Guenzel T, Hoch S, Heinze N, Wilhelm T, Gueldner C, Franzen A, Coordes A, Lieder A, Wiegand S. Sialendoscopy plus laser lithotripsy in sialolithiasis of the submandibular gland in 64 patients: a simple and safe procedure. Auris Nasus Larynx. 2019;46(5):797–802. https://doi.org/10.1016/j.anl.2019.01.009.

    Article  PubMed  Google Scholar 

  271. Hernando M, Echarri RM, Taha M, Martin-Fragueiro L, Hernando A, Mayor GP. Surgical complications of submandibular gland excision. Acta Otorrinolaringol Esp. 2012;63(1):42–6. https://doi.org/10.1016/j.otorri.2011.08.001.

    Article  PubMed  Google Scholar 

  272. Capaccio P, Torretta S, Pignataro L, Koch M. Salivary lithotripsy in the era of sialendoscopy. Acta Otorhinolaryngol Ital. 2017;37(2):113–21. https://doi.org/10.14639/0392-100X-1600.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Saga-Gutierrez C, Chiesa-Estomba CM, Larruscain E, Gonzalez-Garcia JA, Sistiaga JA, Altuna X. Transoral sialolitectomy as an alternative to submaxilectomy in the treatment of submaxillary sialolithiasis. Ear Nose Throat J. 2019;98(5):287–90. https://doi.org/10.1177/0145561319841268.

    Article  PubMed  Google Scholar 

  274. Kopeć T, Szyfter W, Wierzbicka M. Sialoendoscopy and combined approach for the management of salivary gland stones. Eur Arch Otorhinolaryngol. 2013;270(1):219–23. https://doi.org/10.1007/s00405-012-2145-x.

    Article  PubMed  Google Scholar 

  275. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34. https://doi.org/10.1016/j.jclinepi.2009.06.006.

    Article  PubMed  Google Scholar 

  276. Kılınç Y, Çetiner S. Surgical removal of a giant sialolith by diode laser. Open J Stomato. 2014;4(10):484–8.

    Article  Google Scholar 

  277. Azaz B, Regev E, Casap N, Chicin R. Sialolithectomy done with a CO2 laser: clinical and scintigraphic results. J Oral Maxillofac Surg. 1996;54(6):685–8.; discussion 689. https://doi.org/10.1016/s0278-2391(96)90681-3.

    Article  PubMed  Google Scholar 

  278. Barak S, Horowitz I, Katz J, Kaplan I. Experiences with the CO2 laser in the surgical treatment of intraoral salivary gland pathology. J Clin Laser Med Surg. 1991;9(4):295–9. https://doi.org/10.1089/clm.1991.9.295.

    Article  PubMed  Google Scholar 

  279. Barak S, Katz J, Mintz S. Use of the carbon dioxide laser to locate small sialoliths. J Oral Maxillofac Surg. 1993;51(4):379–81. https://doi.org/10.1016/s0278-2391(10)80349-0.

    Article  PubMed  Google Scholar 

  280. López Alvarez-Buhilla P, Blanco Bruned JL, Torres Piedra C, Alfonso Sánchez L. CO(2) laser treatment of sialolithiasis. An Esp Pediatr. 2000;53(1):62–3.

    PubMed  Google Scholar 

  281. Yang SW, Chen TA. Transoral carbon dioxide laser sialolithectomy with topical anaesthesia. A simple, effective, and minimally invasive method. Int J Oral Maxillofac Surg. 2011;40(2):169–72. https://doi.org/10.1016/j.ijom.2010.09.020.

    Article  PubMed  Google Scholar 

  282. Haas OL Jr, Scolari N, da Silva Meirelles L, Favoretto AX, de Oliveira RB. Sialolith removal in the submandibular region using surgical diode laser: report of two cases and literature review. Oral Maxillofac Surg. 2018;22(1):105–11. https://doi.org/10.1007/s10006-018-0674-1.

    Article  PubMed  Google Scholar 

  283. Jensen SB, Vissink A, Firth N. Salivary gland disorders and diseases. In: Farah CS, Balasubramaniam R, McCullough MJ, editors. Contemporary Oral medicine: a comprehensive approach to clinical practice. Cham: Springer International Publishing; 2018. p. 1–85. https://doi.org/10.1007/978-3-319-28100-1_19-1.

    Chapter  Google Scholar 

  284. Farah CS, Savage NW. Cryotherapy for treatment of oral lesions. Aust Dent J. 2006;51(1):2–5. https://doi.org/10.1111/j.1834-7819.2006.tb00392.x.

    Article  PubMed  Google Scholar 

  285. Farah CS, Koelmeyer N, Kaney A, Simanovic B. Nitrous oxide cryotherapy for the management of benign lesions of the oral cavity. J Oral Pathol Med. 2019;48(7):611–8. https://doi.org/10.1111/jop.12912.

    Article  PubMed  Google Scholar 

  286. Mintz S, Barak S, Horowitz I. Carbon dioxide laser excision and vaporization of nonplunging ranulas: a comparison of two treatment protocols. J Oral Maxillofac Surg. 1994;52(4):370–2.

    Article  PubMed  Google Scholar 

  287. Hanna R, Parker S. The advantages of carbon dioxide laser applications in paediatric oral surgery. A prospective cohort study. Lasers Med Sci. 2016;31(8):1527–36. https://doi.org/10.1007/s10103-016-1978-8.

    Article  PubMed  Google Scholar 

  288. Bagher SM, Sulimany AM, Kaplan M, Loo CY. Treating mucocele in pediatric patients using a diode laser: three case reports. Dent J (Basel). 2018;6(2):09. https://doi.org/10.3390/dj6020013.

    Article  Google Scholar 

  289. De Falco D, Di Venere D, Maiorano E. Diode laser excision of Blandin-Nuhn Mucocele. Cureus. 2020;12(3):e7441. https://doi.org/10.7759/cureus.7441.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Correia-Sa IB, Correia-Sa M, Costa-Ferreira P, Silva A, Marques M. Eleven years of parotid gland surgery in a plastic and reconstructive department. J Craniofac Surg. 2016;27(1):e26–33. https://doi.org/10.1097/SCS.0000000000002299.

    Article  PubMed  Google Scholar 

  291. Waldron CA, el-Mofty SK, Gnepp DR. Tumors of the intraoral minor salivary glands: a demographic and histologic study of 426 cases. Oral Surg Oral Med Oral Pathol. 1988;66(3):323–33. https://doi.org/10.1016/0030-4220(88)90240-x.

    Article  PubMed  Google Scholar 

  292. Farah CS, Balasubramaniam R, McCullough MJ. Contemporary oral medicine: a comprehensive approach to clinical practice. Cham: Springer; 2019.

    Book  Google Scholar 

  293. Buchman C, Stringer SP, Mendenhall WM, Parsons JT, Jordan JR, Cassisi NJ. Pleomorphic adenoma: effect of tumor spill and inadequate resection on tumor recurrence. Laryngoscope. 1994;104(10):1231–4.

    Article  PubMed  Google Scholar 

  294. McGurk M, Renehan A, Gleave EN, Hancock BD. Clinical significance of the tumour capsule in the treatment of parotid pleomorphic adenomas. Br J Surg. 1996;83(12):1747–9. https://doi.org/10.1002/bjs.1800831227.

    Article  PubMed  Google Scholar 

  295. Stennert E, Wittekindt C, Klussmann JP, Guntinas-Lichius O. New aspects in parotid gland surgery. Otolaryngol Pol. 2004;58(1):109–14.

    PubMed  Google Scholar 

  296. Johnson JT, Ferlito A, Fagan JJ, Bradley PJ, Rinaldo A. Role of limited parotidectomy in management of pleomorphic adenoma. J Laryngol Otol. 2007;121(12):1126–8. https://doi.org/10.1017/s0022215107000345.

    Article  PubMed  Google Scholar 

  297. Yu GY, Ma DQ. Carcinoma of the salivary gland: a clinicopathologic study of 405 cases. Semin Surg Oncol. 1987;3(4):240–4. https://doi.org/10.1002/ssu.2980030405.

    Article  PubMed  Google Scholar 

  298. Alaa El-Din Y, Sabry D, Abdelrahman AH, Fathy S. Potential therapeutic effects of induced pluripotent stem cells on induced salivary gland cancer in experimental rats. Biotech Histochem. 2019;94(2):92–9. https://doi.org/10.1080/10520295.2018.1508747.

    Article  PubMed  Google Scholar 

  299. Egyedi P. Utilization of the buccal fat pad for closure of oro-antral and/or oro-nasal communications. J Maxillofac Surg. 1977;5(4):241–4. https://doi.org/10.1016/s0301-0503(77)80117-3.

    Article  PubMed  Google Scholar 

  300. Kim MK, Han W, Kim SG. The use of the buccal fat pad flap for oral reconstruction. Maxillofac Plast Reconstr Surg. 2017;39(1):5. https://doi.org/10.1186/s40902-017-0105-5.

    Article  PubMed  PubMed Central  Google Scholar 

  301. Chaudhary B, Gong Z, Lin Z, Abbas K, Ling B, Liu H. Reconstruction of intraoral maxillary defect with buccal fat pad. J Craniofac Surg. 2014;25(6):2174–7. https://doi.org/10.1097/scs.0000000000001075.

    Article  PubMed  Google Scholar 

  302. Broccaioli E, Niada S, Rasperini G, Ferreira LM, Arrigoni E, Yenagi V, Brini AT. Mesenchymal stem cells from Bichat’s fat pad: In vitro comparison with adipose-derived stem cells from subcutaneous tissue. Biores Open Access. 2013;2(2):107–17. https://doi.org/10.1089/biores.2012.0291.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Ghaderi H, Razmkhah M, Kiany F, Chenari N, Haghshenas MR, Ghaderi A. Comparison of osteogenic and chondrogenic differentiation ability of buccal fat pad derived mesenchymal stem cells and gingival derived cells. J Dent (Shiraz). 2018;19(2):124–31.

    Google Scholar 

  304. Oliveira Neto JQ, Cetira Filho EL, Andrade GS, Silveira DXD, Carvalho A. Technique of the buccal fat pad flap as an alternative for the surgical defect of pleomorphic adenoma. J Craniofac Surg. 2019;30(3):798–9. https://doi.org/10.1097/SCS.0000000000004890.

    Article  PubMed  Google Scholar 

  305. Khojasteh A, Sadeghi N. Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: a preliminary human study. Int J Oral Maxillofac Surg. 2016;45(7):864–71. https://doi.org/10.1016/j.ijom.2016.01.003.

    Article  PubMed  Google Scholar 

  306. Takahashi H, Ishikawa H, Tanaka A. Regenerative medicine for Parkinson’s disease using differentiated nerve cells derived from human buccal fat pad stem cells. Hum Cell. 2017;30(2):60–71. https://doi.org/10.1007/s13577-017-0160-3.

    Article  PubMed  Google Scholar 

  307. Moon SY. Surgical management of the palatal pleomorphic adenoma. J Craniofac Surg. 2019;30(6):e580–2. https://doi.org/10.1097/scs.0000000000005608.

    Article  PubMed  Google Scholar 

  308. Bataineh AB, al-Dwairi ZN. Surgical management of pleomorphic adenoma of the palate. J Ir Dent Assoc. 2002;48(4):126–31.

    PubMed  Google Scholar 

  309. Alkan A, Inal S. Closure of palatal defects following excision of palatal pleomorphic adenomas. J Contemp Dent Pract. 2008;9(6):99–107.

    Article  PubMed  Google Scholar 

  310. Seok H, Kim MK, Kim SG. Reconstruction of partial maxillectomy defect with a buccal fat pad flap and application of 4-hexylresorcinol: a case report. J Korean Assoc Oral Maxillofac Surg. 2016;42(6):370–4. https://doi.org/10.5125/jkaoms.2016.42.6.370.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Devaraju R, Gantala R, Aitha H, Gotoor SG. Mucoepidermoid carcinoma. BMJ Case Rep. 2014:bcr-2013-202776. https://doi.org/10.1136/bcr-2013-202776

  312. Kawakami M, Ishikawa H, Tanaka A, Mataga I. Induction and differentiation of adipose-derived stem cells from human buccal fat pads into salivary gland cells. Hum Cell. 2016;29(3):101–10. https://doi.org/10.1007/s13577-016-0132-z.

    Article  PubMed  PubMed Central  Google Scholar 

  313. Halbritter SA, Altermatt HJ, Caversaccio M, Bornstein MM. Apocrine papillary cystadenoma of a minor salivary gland on the lower lip: case presentation. Quintessence Int. 2009;40(2):167–9.

    PubMed  Google Scholar 

  314. Mavragani CP, Moutsopoulos HM. Conventional therapy of Sjogren’s syndrome. Clin Rev Allergy Immunol. 2007;32(3):284–91. https://doi.org/10.1007/s12016-007-8008-3.

    Article  PubMed  Google Scholar 

  315. Ramos-Casals M, Brito-Zerón P, Sisó-Almirall A, Bosch X, Tzioufas AG. Topical and systemic medications for the treatment of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2012;8(7):399–411. https://doi.org/10.1038/nrrheum.2012.53.

    Article  PubMed  Google Scholar 

  316. Mavragani CP, Moutsopoulos NM, Moutsopoulos HM. The management of Sjögren’s syndrome. Nat Clin Pract Rheumatol. 2006;2(5):252–61. https://doi.org/10.1038/ncprheum0165.

    Article  PubMed  Google Scholar 

  317. Pringle S, Wang X, Verstappen G, Terpstra JH, Zhang CK, He A, Patel V, Jones RE, Baird DM, Spijkervet FKL, Vissink A, Bootsma H, Coppes RP, Kroese FGM. Salivary gland stem cells age prematurely in primary Sjogren’s syndrome. Arthritis Rheumatol. 2019;71(1):133–42. https://doi.org/10.1002/art.40659.

    Article  PubMed  Google Scholar 

  318. Simoes A, Platero MD, Campos L, Aranha AC, Eduardo Cde P, Nicolau J. Laser as a therapy for dry mouth symptoms in a patient with Sjogren’s syndrome: a case report. Spec Care Dentist. 2009;29(3):134–7.

    Article  PubMed  Google Scholar 

  319. Xu J, Wang D, Liu D, Fan Z, Zhang H, Liu O, Ding G, Gao R, Zhang C, Ding Y, Bromberg JS, Chen W, Sun L, Wang S. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjogren syndrome. Blood. 2012;120(15):3142–51. https://doi.org/10.1182/blood-2011-11-391144.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Chen FY, Xue B, Wang H. Analysis of the clinical efficacy of yiqi fumai injection combined hydroxychloroquine sulfate tablet for treating Sjogren’s syndrome. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012;32(12):1621–3.

    PubMed  Google Scholar 

  321. Khalili S, Liu Y, Kornete M, Roescher N, Kodama S, Peterson A, Piccirillo CA, Tran SD. Mesenchymal stromal cells improve salivary function and reduce lymphocytic infiltrates in mice with Sjögren’s-like disease. PLoS One. 2012;7(6):e38615. https://doi.org/10.1371/journal.pone.0038615.

    Article  PubMed  PubMed Central  Google Scholar 

  322. Khalili S, Faustman DL, Liu Y, Sumita Y, Blank D, Peterson A, Kodama S, Tran SD. Treatment for salivary gland hypofunction at both initial and advanced stages of Sjogren-like disease: a comparative study of bone marrow therapy versus spleen cell therapy with a 1-year monitoring period. Cytotherapy. 2014;16(3):412–23. https://doi.org/10.1016/j.jcyt.2013.10.006.

    Article  PubMed  Google Scholar 

  323. Liu Y, Li C, Wang S, Guo J, Guo J, Fu J, Ren L, An Y, He J, Li Z. Human umbilical cord mesenchymal stem cells confer potent immunosuppressive effects in Sjögren’s syndrome by inducing regulatory T cells. Mod Rheumatol. 2020;1–11. https://doi.org/10.1080/14397595.2019.1707996.

  324. Yong KW, Choi JR, Dolbashid AS, Wan Safwani WKZ. Biosafety and bioefficacy assessment of human mesenchymal stem cells: what do we know so far? Regen Med. 2018;13(2):219–32. https://doi.org/10.2217/rme-2017-0078.

    Article  PubMed  Google Scholar 

  325. Jensen DH, Oliveri RS, Trojahn Kolle SF, Fischer-Nielsen A, Specht L, Bardow A, Buchwald C. Mesenchymal stem cell therapy for salivary gland dysfunction and xerostomia: a systematic review of preclinical studies. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(3):335–342.e331. https://doi.org/10.1016/j.oooo.2013.11.496.

    Article  PubMed  Google Scholar 

  326. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP. Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14(3):199–212. https://doi.org/10.1177/154411130301400305.

    Article  PubMed  Google Scholar 

  327. Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol. 2008;26(22):3770–6. https://doi.org/10.1200/jco.2007.14.6647.

    Article  PubMed  Google Scholar 

  328. Ho KF, Farnell DJ, Routledge JA, Burns MP, Sykes AJ, Slevin NJ, Davidson SE. Developing a CTCAEs patient questionnaire for late toxicity after head and neck radiotherapy. Eur J Cancer. 2009;45(11):1992–8. https://doi.org/10.1016/j.ejca.2009.04.010.

    Article  PubMed  Google Scholar 

  329. Eisbruch A, Ten Haken RK, Kim HM, Marsh LH, Ship JA. Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys. 1999;45(3):577–87. https://doi.org/10.1016/s0360-3016(99)00247-3.

    Article  PubMed  Google Scholar 

  330. Murdoch-Kinch CA, Kim HM, Vineberg KA, Ship JA, Eisbruch A. Dose-effect relationships for the submandibular salivary glands and implications for their sparing by intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72(2):373–82. https://doi.org/10.1016/j.ijrobp.2007.12.033.

    Article  PubMed  PubMed Central  Google Scholar 

  331. Ortholan C, Chamorey E, Benezery K, Thariat J, Dassonville O, Poissonnet G, Bozec A, Follana P, Peyrade F, Sudaka A, Gerard JP, Bensadoun RJ. Modeling of salivary production recovery after radiotherapy using mixed models: determination of optimal dose constraint for IMRT planning and construction of convenient tools to predict salivary function. Int J Radiat Oncol Biol Phys. 2009;73(1):178–86. https://doi.org/10.1016/j.ijrobp.2008.03.068.

    Article  PubMed  Google Scholar 

  332. Roesink JM, Moerland MA, Battermann JJ, Hordijk GJ, Terhaard CH. Quantitative dose-volume response analysis of changes in parotid gland function after radiotherapy in the head-and-neck region. Int J Radiat Oncol Biol Phys. 2001;51(4):938–46. https://doi.org/10.1016/s0360-3016(01)01717-5.

    Article  PubMed  Google Scholar 

  333. Burlage FR, Coppes RP, Meertens H, Stokman MA, Vissink A. Parotid and submandibular/sublingual salivary flow during high dose radiotherapy. Radiother Oncol. 2001;61(3):271–4. https://doi.org/10.1016/s0167-8140(01)00427-3.

    Article  PubMed  Google Scholar 

  334. Bralic M, Muhvic-Urek M, Stemberga V, Golemac M, Jurkovic S, Borcic J, Braut A, Tomac J. Cell death and cell proliferation in mouse submandibular gland during early post-irradiation phase. Acta Med Okayama. 2005;59(4):153–9. https://doi.org/10.18926/amo/31948.

    Article  PubMed  Google Scholar 

  335. Lombaert IM, Brunsting JF, Wierenga PK, Kampinga HH, de Haan G, Coppes RP. Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation. Clin Cancer Res. 2008;14(23):7741–50. https://doi.org/10.1158/1078-0432.Ccr-08-1449.

    Article  PubMed  Google Scholar 

  336. Burlage FR, Faber H, Kampinga HH, Langendijk JA, Vissink A, Coppes RP. Enhanced proliferation of acinar and progenitor cells by prophylactic pilocarpine treatment underlies the observed amelioration of radiation injury to parotid glands. Radiother Oncol. 2009;90(2):253–6. https://doi.org/10.1016/j.radonc.2008.11.011.

    Article  PubMed  Google Scholar 

  337. Marzouki HZ, Elkhalidy Y, Jha N, Scrimger R, Debenham BJ, Harris JR, O’Connell DA, Seikaly H. Modification of the submandibular gland transfer procedure. Laryngoscope. 2016;126(11):2492–6. https://doi.org/10.1002/lary.26029.

    Article  PubMed  Google Scholar 

  338. Morand GB, Madana J, Da Silva SD, Roskies M, Sultanem K, Black MJ, Mlynarek AM, Hier MP. Survival and quality of life in oropharyngeal cancer patients treated with primary chemoradiation after salivary gland transfer. J Laryngol Otol. 2016;130(8):755–62. https://doi.org/10.1017/S0022215116008100.

    Article  PubMed  Google Scholar 

  339. Jha N, Seikaly H, Harris J, Williams D, Sultanem K, Hier M, Ghosh S, Black M, Butler J, Sutherland D, Kerr P, Barnaby P. Phase III randomized study: oral pilocarpine versus submandibular salivary gland transfer protocol for the management of radiation-induced xerostomia. Head Neck. 2009;31(2):234–43. https://doi.org/10.1002/hed.20961.

    Article  PubMed  Google Scholar 

  340. Nguyen VT, Dawson P, Zhang Q, Harris Z, Limesand KH. Administration of growth factors promotes salisphere formation from irradiated parotid salivary glands. PLoS One. 2018;13(3):e0193942. https://doi.org/10.1371/journal.pone.0193942.

    Article  PubMed  PubMed Central  Google Scholar 

  341. Kim JH, Jeong BK, Jang SJ, Yun JW, Jung MH, Kang KM, Kim TG, Woo SH. Alpha-lipoic acid ameliorates radiation-induced salivary gland injury by preserving parasympathetic innervation in rats. Int J Mol Sci. 2020;21(7):2260. https://doi.org/10.3390/ijms21072260.

    Article  PubMed Central  Google Scholar 

  342. Fang D, Hu S, Liu Y, Quan VH, Seuntjens J, Tran SD. Identification of the active components in bone marrow soup: a mitigator against irradiation-injury to salivary glands. Sci Rep. 2015;5:16017. https://doi.org/10.1038/srep16017.

    Article  PubMed  PubMed Central  Google Scholar 

  343. Fang D, Shang S, Liu Y, Bakkar M, Sumita Y, Seuntjens J, Tran SD. Optimal timing and frequency of bone marrow soup therapy for functional restoration of salivary glands injured by single-dose or fractionated irradiation. J Tissue Eng Regen Med. 2018;12(2):e1195–205. https://doi.org/10.1002/term.2513.

    Article  PubMed  Google Scholar 

  344. Su X, Fang D, Liu Y, Ruan G, Seuntjens J, Kinsella J, Tran S. Lyophilized bone marrow cell extract functionally restores irradiation-injured salivary glands. Oral Dis. 2018;24(1–2):202–6. https://doi.org/10.1111/odi.12728.

    Article  PubMed  Google Scholar 

  345. Emmerson E, Knox SM. Salivary gland stem cells: a review of development, regeneration and cancer. Genesis. 2018;56(5):e23211. https://doi.org/10.1002/dvg.23211.

    Article  PubMed  PubMed Central  Google Scholar 

  346. Jeong J, Baek H, Kim YJ, Choi Y, Lee H, Lee E, Kim ES, Hah JH, Kwon TK, Choi IJ, Kwon H. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp Mol Med. 2013;45:e58. https://doi.org/10.1038/emm.2013.121.

    Article  PubMed  PubMed Central  Google Scholar 

  347. Li Z, Wang Y, Xing H, Wang Z, Hu H, An R, Xu H, Liu Y, Liu B. Protective efficacy of intravenous transplantation of adipose-derived stem cells for the prevention of radiation-induced salivary gland damage. Arch Oral Biol. 2015;60(10):1488–96. https://doi.org/10.1016/j.archoralbio.2015.07.016.

    Article  PubMed  Google Scholar 

  348. Kojima T, Kanemaru S, Hirano S, Tateya I, Ohno S, Nakamura T, Ito J. Regeneration of radiation damaged salivary glands with adipose-derived stromal cells. Laryngoscope. 2011;121(9):1864–9. https://doi.org/10.1002/lary.22080.

    Article  PubMed  Google Scholar 

  349. Lin CY, Chang FH, Chen CY, Huang CY, Hu FC, Huang WK, Ju SS, Chen MH. Cell therapy for salivary gland regeneration. J Dent Res. 2011;90(3):341–6. https://doi.org/10.1177/0022034510386374.

    Article  PubMed  Google Scholar 

  350. Serrano Martinez P, Cinat D, van Luijk P, Baanstra M, de Haan G, Pringle S, Coppes RP. Mouse parotid salivary gland organoids for the in vitro study of stem cell radiation response. Oral Dis. n/a (n/a). https://doi.org/10.1111/odi.13475

  351. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36. https://doi.org/10.1038/nri2395.

    Article  PubMed  Google Scholar 

  352. Grønhøj C, Jensen DH, Vester-Glowinski P, Jensen SB, Bardow A, Oliveri RS, Fog LM, Specht L, Thomsen C, Darkner S, Jensen M, Müller V, Kiss K, Agander T, Andersen E, Fischer-Nielsen A, von Buchwald C. Safety and efficacy of mesenchymal stem cells for radiation-induced xerostomia: a randomized, placebo-controlled phase 1/2 trial (MESRIX). Int J Radiat Oncol Biol Phys. 2018;101(3):581–92. https://doi.org/10.1016/j.ijrobp.2018.02.034.

    Article  PubMed  Google Scholar 

  353. Alotaibi H, Tuzlakoğlu-Öztürk M, Tazebay UH. The thyroid Na+/I- symporter: molecular characterization and genomic regulation. Mol Imaging Radionucl Ther. 2017;26(Suppl 1):92–101. https://doi.org/10.4274/2017.26.suppl.11.

    Article  PubMed  PubMed Central  Google Scholar 

  354. Jo KS, An YS, Lee SJ, Soh EY, Lee J, Chung YS, Kim DJ, Yoon SH, Lee DH, Yoon JK. Significance of salivary gland radioiodine retention on post-ablation (131)I scintigraphy as a predictor of salivary gland dysfunction in patients with differentiated thyroid carcinoma. Nucl Med Mol Imaging. 2014;48(3):203–11. https://doi.org/10.1007/s13139-014-0274-4.

    Article  PubMed  PubMed Central  Google Scholar 

  355. Jeong SY, Kim HW, Lee SW, Ahn BC, Lee J. Salivary gland function 5 years after radioactive iodine ablation in patients with differentiated thyroid cancer: direct comparison of pre- and postablation scintigraphies and their relation to xerostomia symptoms. Thyroid. 2013;23(5):609–16. https://doi.org/10.1089/thy.2012.0106.

    Article  PubMed  PubMed Central  Google Scholar 

  356. Shi L, Cong X, Zhang Y, Ding C, Ding QW, Fu FY, Wu LL, Yu GY. Carbachol improves secretion in the early phase after rabbit submandibular gland transplantation. Oral Dis. 2010;16(4):351–9. https://doi.org/10.1111/j.1601-0825.2009.01633.x.

    Article  PubMed  Google Scholar 

  357. Aframian DJ, Palmon A. Current status of the development of an artificial salivary gland. Tissue Eng Part B Rev. 2008;14(2):187–98. https://doi.org/10.1089/ten.teb.2008.0044.

    Article  PubMed  Google Scholar 

  358. Nicolay NH, Lopez Perez R, Saffrich R, Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget. 2015;6(23):19366–80. https://doi.org/10.18632/oncotarget.4358.

    Article  PubMed  PubMed Central  Google Scholar 

  359. Saylam G, Bayır Ö, Gültekin SS, Pınarlı FA, Han Ü, Korkmaz MH, Sancaktar ME, Tatar İ, Sargon MF, Tatar E. Protective/restorative role of the adipose tissue-derived mesenchymal stem cells on the radioiodine-induced salivary gland damage in rats. Radiol Oncol. 2017;51(3):307–16. https://doi.org/10.1515/raon-2017-0022.

    Article  PubMed  PubMed Central  Google Scholar 

  360. Kim JW, Kim JM, Choi ME, Kim SK, Kim YM, Choi JS. Adipose-derived mesenchymal stem cells regenerate radioiodine-induced salivary gland damage in a murine model. Science. 2019;9(1):15752. https://doi.org/10.1038/s41598-019-51775-9.

    Article  Google Scholar 

  361. Jensen SB, Pedersen AM, Vissink A, Andersen E, Brown CG, Davies AN, Dutilh J, Fulton JS, Jankovic L, Lopes NN, Mello AL, Muniz LV, Murdoch-Kinch CA, Nair RG, Napeñas JJ, Nogueira-Rodrigues A, Saunders D, Stirling B, von Bültzingslöwen I, Weikel DS, Elting LS, Spijkervet FK, Brennan MT. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Support Care Cancer. 2010;18(8):1039–60. https://doi.org/10.1007/s00520-010-0827-8.

    Article  PubMed  Google Scholar 

  362. Harrison T, Bigler L, Tucci M, Pratt L, Malamud F, Thigpen JT, Streckfus C, Younger H. Salivary sIgA concentrations and stimulated whole saliva flow rates among women undergoing chemotherapy for breast cancer: an exploratory study. Spec Care Dentist. 1998;18(3):109–12. https://doi.org/10.1111/j.1754-4505.1998.tb00914.x.

    Article  PubMed  Google Scholar 

  363. Napeñas JJ, Miles L, Guajardo-Streckfus C, Streckfus CF. Salivary flow rates among women diagnosed with benign and malignant tumors. Spec Care Dentist. 2013;33(3):102–10. https://doi.org/10.1111/scd.12017.

    Article  PubMed  Google Scholar 

  364. Jensen SB, Mouridsen HT, Reibel J, Brünner N, Nauntofte B. Adjuvant chemotherapy in breast cancer patients induces temporary salivary gland hypofunction. Oral Oncol. 2008;44(2):162–73. https://doi.org/10.1016/j.oraloncology.2007.01.015.

    Article  PubMed  Google Scholar 

  365. Meurman JH, Laine P, Keinànen S, Pyrhönen S, Teerenhovi L, Lindqvist C. Five-year follow-up of saliva in patients treated for lymphomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83(4):447–52. https://doi.org/10.1016/s1079-2104(97)90143-8.

    Article  PubMed  Google Scholar 

  366. Luo Z, Shang X, Zhang H, Wang G, Massey PA, Barton SR, Kevil CG, Dong Y. Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am J Pathol. 2019;189(8):1495–500. https://doi.org/10.1016/j.ajpath.2019.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  367. Qin Y, Wang L, Gao Z, Chen G, Zhang C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 2016;6:21961. https://doi.org/10.1038/srep21961.

    Article  PubMed  PubMed Central  Google Scholar 

  368. Fishero BA, Kohli N, Das A, Christophel JJ, Cui Q. Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr. 2015;8(1):23–30. https://doi.org/10.1055/s-0034-1393724.

    Article  PubMed  Google Scholar 

  369. Marx RE. Bone and bone graft healing. Oral Maxillofac Surg Clin North Am. 2007;19(4):455–66., v. https://doi.org/10.1016/j.coms.2007.07.008.

    Article  PubMed  Google Scholar 

  370. Mulligan RP, Friedman JA, Mahabir RC. A nationwide review of the associations among cervical spine injuries, head injuries, and facial fractures. J Trauma. 2010;68(3):587–92. https://doi.org/10.1097/TA.0b013e3181b16bc5.

    Article  PubMed  Google Scholar 

  371. Wang XX, Allen RJ Jr, Tutela JP, Sailon A, Allori AC, Davidson EH, Paek GK, Saadeh PB, McCarthy JG, Warren SM. Progenitor cell mobilization enhances bone healing by means of improved neovascularization and osteogenesis. Plast Reconstr Surg. 2011;128(2):395–405. https://doi.org/10.1097/PRS.0b013e31821e6e10.

    Article  PubMed  Google Scholar 

  372. Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann NY Acad Sci. 2007;1117:62–72. https://doi.org/10.1196/annals.1402.074.

    Article  PubMed  Google Scholar 

  373. Fong KD, Nacamuli RP, Song HM, Warren SM, Lorenz HP, Longaker MT. New strategies for craniofacial repair and replacement: a brief review. J Craniofac Surg. 2003;14(3):333–9. https://doi.org/10.1097/00001665-200305000-00011.

    Article  PubMed  Google Scholar 

  374. Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E, Tarle SA, Bartel RL, Giannobile WV. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant. 2013;22(5):767–77. https://doi.org/10.3727/096368912x652968.

    Article  PubMed  Google Scholar 

  375. Yang P, Huang X, Wang C, Dang X, Wang K. Repair of bone defects using a new biomimetic construction fabricated by adipose-derived stem cells, collagen I, and porous beta-tricalcium phosphate scaffolds. Exp Biol Med (Maywood). 2013;238(12):1331–43. https://doi.org/10.1177/1535370213505827.

    Article  Google Scholar 

  376. Valderrábano RJ, Wu JY. Bone and blood interactions in human health and disease. Bone. 2019;119:65–70. https://doi.org/10.1016/j.bone.2018.02.019.

    Article  PubMed  Google Scholar 

  377. Piper K, Valentine G. Bone pathology. Methods Mol Biol. 2012;915:51–88. https://doi.org/10.1007/978-1-61779-977-8_4.

    Article  PubMed  Google Scholar 

  378. Tandon R, Herford AS. Future of bone pathology, bone grafting, and osseointegration in oral and maxillofacial surgery: how applying optical advancements can help both fields. J Biomed Opt. 2013;18(5):55006. https://doi.org/10.1117/1.Jbo.18.5.055006.

    Article  PubMed  Google Scholar 

  379. Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity: causes, recognition, prevention, treatment and long-term consequences. Arch Dis Child Fetal Neonatal Ed. 2019;104(5):F560–f566. https://doi.org/10.1136/archdischild-2018-316330.

    Article  PubMed  Google Scholar 

  380. Meng Y, Zhao YN, Zhang YQ, Liu DG, Gao Y. Three-dimensional radiographic features of ameloblastoma and cystic lesions in the maxilla. Dentomaxillofac Radiol. 2019;48(6):20190066. https://doi.org/10.1259/dmfr.20190066.

    Article  PubMed  PubMed Central  Google Scholar 

  381. Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008;246(3):662–74. https://doi.org/10.1148/radiol.2463061038.

    Article  PubMed  Google Scholar 

  382. Andreu-Arasa VC, Chapman MN, Kuno H, Fujita A, Sakai O. Craniofacial manifestations of systemic disorders: CT and MR imaging findings and imaging approach. Radiographics. 2018;38(3):890–911. https://doi.org/10.1148/rg.2018170145.

    Article  PubMed  Google Scholar 

  383. McClary AC, West RB, McClary AC, Pollack JR, Fischbein NJ, Holsinger CF, Sunwoo J, Colevas AD, Sirjani D. Ameloblastoma: a clinical review and trends in management. Eur Arch Otorhinolaryngol. 2016;273(7):1649–61. https://doi.org/10.1007/s00405-015-3631-8.

    Article  PubMed  Google Scholar 

  384. Effiom OA, Ogundana OM, Akinshipo AO, Akintoye SO. Ameloblastoma: current etiopathological concepts and management. Oral Dis. 2018;24(3):307–16. https://doi.org/10.1111/odi.12646.

    Article  PubMed  Google Scholar 

  385. Kreppel M, Zöller J. Ameloblastoma-clinical, radiological, and therapeutic findings. Oral Dis. 2018;24(1–2):63–6. https://doi.org/10.1111/odi.12702.

    Article  PubMed  Google Scholar 

  386. Adeel M, Rajput MSA, Arain AA, Baloch M, Khan M. Ameloblastoma: management and outcome. Cureus. 2018;10(10):e3437. https://doi.org/10.7759/cureus.3437.

    Article  PubMed  PubMed Central  Google Scholar 

  387. Milman T, Ying GS, Pan W, LiVolsi V. Ameloblastoma: 25 year experience at a single institution. Head Neck Pathol. 2016;10(4):513–20. https://doi.org/10.1007/s12105-016-0734-5.

    Article  PubMed  PubMed Central  Google Scholar 

  388. Khalele BA, Al-Shiaty RA. A novel marker of ameloblastoma and systematic review of immunohistochemical findings. Ann Diagn Pathol. 2016;22:18–24. https://doi.org/10.1016/j.anndiagpath.2016.01.005.

    Article  PubMed  Google Scholar 

  389. Mendenhall WM, Werning JW, Fernandes R, Malyapa RS, Mendenhall NP. Ameloblastoma. Am J Clin Oncol. 2007;30(6):645–8. https://doi.org/10.1097/COC.0b013e3181573e59.

    Article  PubMed  Google Scholar 

  390. Hendra FN, Natsir Kalla DS, Van Cann EM, de Vet HCW, Helder MN, Forouzanfar T. Radical vs conservative treatment of intraosseous ameloblastoma: systematic review and meta-analysis. Oral Dis. 2019;25(7):1683–96. https://doi.org/10.1111/odi.13014.

    Article  PubMed  Google Scholar 

  391. Cicciù M, Herford AS, Cicciù D, Tandon R, Maiorana C. Recombinant human bone morphogenetic protein-2 promote and stabilize hard and soft tissue healing for large mandibular new bone reconstruction defects. J Craniofac Surg. 2014;25(3):860–2. https://doi.org/10.1097/scs.0000000000000830.

    Article  PubMed  Google Scholar 

  392. Chuong R, Donoff RB, Guralnick W. The odontogenic keratocyst. J Oral Maxillofac Surg. 1982;40(12):797–802. https://doi.org/10.1016/0278-2391(82)90177-x.

    Article  PubMed  Google Scholar 

  393. Goyault G, Moser T, Lutz JC, Neuville A, Buy X, Freitas R, Roy C, Gangi A. Odontogenic keratocyst. J Radiol. 2007;88(11 Pt 1):1733–5. https://doi.org/10.1016/s0221-0363(07)74055-6.

    Article  PubMed  Google Scholar 

  394. Gomes CC, Diniz MG, Gomez RS. Review of the molecular pathogenesis of the odontogenic keratocyst. Oral Oncol. 2009;45(12):1011–4. https://doi.org/10.1016/j.oraloncology.2009.08.003.

    Article  PubMed  Google Scholar 

  395. Preston RD, Narayana N. Peripheral odontogenic keratocyst. J Periodontol. 2005;76(12):2312–5. https://doi.org/10.1902/jop.2005.76.12.2312.

    Article  PubMed  Google Scholar 

  396. Polak K, Jędrusik-Pawłowska M, Drozdzowska B, Morawiec T. Odontogenic keratocyst of the mandible: a case report and literature review. Dent Med Probl. 2019;56(4):433–6. https://doi.org/10.17219/dmp/110682.

    Article  PubMed  Google Scholar 

  397. Slusarenko da Silva Y, Stoelinga PJW, Naclério-Homem MDG. Recurrence of nonsyndromic odontogenic keratocyst after marsupialization and delayed enucleation vs. enucleation alone: a systematic review and meta-analysis. Oral Maxillofac Surg. 2019;23(1):1–11. https://doi.org/10.1007/s10006-018-0737-3.

    Article  PubMed  Google Scholar 

  398. Guna TP, Rilna P, Sathyanarayanan R. Is surgical treatment based on one-step or two-step protocol effective in managing the odontogenic keratocyst? J Oral Maxillofac Surg. 2019;77(12):2367. https://doi.org/10.1016/j.joms.2019.07.022.

    Article  PubMed  Google Scholar 

  399. Johnson NR, Gannon OM, Savage NW, Batstone MD. Frequency of odontogenic cysts and tumors: a systematic review. J Investig Clin Dent. 2014;5(1):9–14. https://doi.org/10.1111/jicd.12044.

    Article  PubMed  Google Scholar 

  400. O’Neill R, Al-Hezaimi K. Identification of an odontogenic keratocyst and treatment with guided tissue regeneration: case report. J Can Dent Assoc. 2011;77:b6.

    PubMed  Google Scholar 

  401. Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010;21(Suppl 7):vii320–5. https://doi.org/10.1093/annonc/mdq276.

    Article  PubMed  Google Scholar 

  402. ElKordy MA, ElBaradie TS, ElSebai HI, KhairAlla SM, Amin AAE. Osteosarcoma of the jaw: challenges in the diagnosis and treatment. J Egypt Natl Canc Inst. 2018;30(1):7–11. https://doi.org/10.1016/j.jnci.2018.02.001.

    Article  PubMed  Google Scholar 

  403. Simpson E, Brown HL. Understanding osteosarcomas. Jaapa. 2018;31(8):15–9. https://doi.org/10.1097/01.JAA.0000541477.24116.8d.

    Article  PubMed  Google Scholar 

  404. Biazzo A, De Paolis M. Multidisciplinary approach to osteosarcoma. Acta Orthop Belg. 2016;82(4):690–8.

    PubMed  Google Scholar 

  405. Xie Y, Huang J, Wu M, Zhou Y. Expression of CD133 protein in osteosarcoma and its relationship with the clinicopathological features and prognosis. J Cancer Res Ther. 2018;14(4):892–5. https://doi.org/10.4103/jcrt.JCRT_461_17.

    Article  PubMed  Google Scholar 

  406. Shi K, Wang SL, Shen B, Yu FQ, Weng DF, Lin JH. Clinicopathological and prognostic values of fibronectin and integrin αvβ3 expression in primary osteosarcoma. World J Surg Oncol. 2019;17(1):23. https://doi.org/10.1186/s12957-019-1566-z.

    Article  PubMed  PubMed Central  Google Scholar 

  407. Sarsilmaz A, Argin M, Sezak M, Altay C, Erdogan N. Primary osteosarcoma arising from subcutaneous tissue: 5-year follow-up. Clin Imaging. 2012;36(4):402–5. https://doi.org/10.1016/j.clinimag.2011.10.016.

    Article  PubMed  Google Scholar 

  408. Bishop MW, Janeway KA, Gorlick R. Future directions in the treatment of osteosarcoma. Curr Opin Pediatr. 2016;28(1):26–33. https://doi.org/10.1097/mop.0000000000000298.

    Article  PubMed  PubMed Central  Google Scholar 

  409. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35. https://doi.org/10.1038/nrc3838.

    Article  PubMed  Google Scholar 

  410. Fenerty S, Shaw W, Verma R, Syed AB, Kuklani R, Yang J, Ali S. Florid cemento-osseous dysplasia: review of an uncommon fibro-osseous lesion of the jaw with important clinical implications. Skelet Radiol. 2017;46(5):581–90. https://doi.org/10.1007/s00256-017-2590-0.

    Article  Google Scholar 

  411. Brody A, Zalatnai A, Csomo K, Belik A, Dobo-Nagy C. Difficulties in the diagnosis of periapical translucencies and in the classification of cemento-osseous dysplasia. BMC Oral Health. 2019;19(1):139. https://doi.org/10.1186/s12903-019-0843-0.

    Article  PubMed  PubMed Central  Google Scholar 

  412. Yang DD, Ghuman A, Stratton R, Hall M, Parthipun A. Appearance of florid cemento-osseous dysplasia on SPECT/CT. Clin Nucl Med. 2019;44(5):e357–9. https://doi.org/10.1097/rlu.0000000000002512.

    Article  PubMed  Google Scholar 

  413. Patel MM, Wilkey JF, Abdelsayed R, D’Silva NJ, Malchoff C, Mallya SM. Analysis of GNAS mutations in cemento-ossifying fibromas and cemento-osseous dysplasias of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):739–43. https://doi.org/10.1016/j.tripleo.2009.12.016.

    Article  PubMed  PubMed Central  Google Scholar 

  414. Aiuto R, Gucciardino F, Rapetti R, Siervo S, Bianch AE. Management of symptomatic florid cemento-osseous dysplasia: literature review and a case report. J Clin Exp Dent. 2018;10(3):e291–5. https://doi.org/10.4317/jced.54577.

    Article  PubMed  PubMed Central  Google Scholar 

  415. Chrcanovic BR, Gomez RS. Juvenile ossifying fibroma of the jaws and paranasal sinuses: a systematic review of the cases reported in the literature. Int J Oral Maxillofac Surg. 2020;49(1):28–37. https://doi.org/10.1016/j.ijom.2019.06.029.

    Article  PubMed  Google Scholar 

  416. MacDonald-Jankowski DS. Ossifying fibroma: a systematic review. Dentomaxillofac Radiol. 2009;38(8):495–513. https://doi.org/10.1259/dmfr/70933621.

    Article  PubMed  Google Scholar 

  417. Katti G, Khan MM, Chaubey SS, Amena M. Cemento-ossifying fibroma of the jaw. BMJ Case Rep. 2016. https://doi.org/10.1136/bcr-2015-214327.

  418. Titinchi F, Morkel J. Ossifying fibroma: analysis of treatment methods and recurrence patterns. J Oral Maxillofac Surg. 2016;74(12):2409–19. https://doi.org/10.1016/j.joms.2016.05.018.

    Article  PubMed  Google Scholar 

  419. Kransdorf MJ, Moser RP Jr, Gilkey FW. Fibrous dysplasia. Radiographics. 1990;10(3):519–37. https://doi.org/10.1148/radiographics.10.3.2188311.

    Article  PubMed  Google Scholar 

  420. Burke AB, Collins MT, Boyce AM. Fibrous dysplasia of bone: craniofacial and dental implications. Oral Dis. 2017;23(6):697–708. https://doi.org/10.1111/odi.12563.

    Article  PubMed  Google Scholar 

  421. Ricalde P, Magliocca KR, Lee JS. Craniofacial fibrous dysplasia. Oral Maxillofac Surg Clin North Am. 2012;24(3):427–41. https://doi.org/10.1016/j.coms.2012.05.004.

    Article  PubMed  Google Scholar 

  422. Florez H, Peris P, Guañabens N. Fibrous dysplasia. Clinical review and therapeutic management. Med Clin (Barc). 2016;147(12):547–53. https://doi.org/10.1016/j.medcli.2016.07.030.

    Article  Google Scholar 

  423. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85. https://doi.org/10.1016/s0140-6736(04)16051-0.

    Article  PubMed  Google Scholar 

  424. Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164a(6):1470–81. https://doi.org/10.1002/ajmg.a.36545.

    Article  PubMed  Google Scholar 

  425. Bregou Bourgeois A, Aubry-Rozier B, Bonafé L, Laurent-Applegate L, Pioletti DP, Zambelli PY. Osteogenesis imperfecta: from diagnosis and multidisciplinary treatment to future perspectives. Swiss Med Wkly. 2016;146:w14322. https://doi.org/10.4414/smw.2016.14322.

    Article  PubMed  Google Scholar 

  426. Thomas IH, DiMeglio LA. Advances in the classification and treatment of osteogenesis imperfecta. Curr Osteoporos Rep. 2016;14(1):1–9. https://doi.org/10.1007/s11914-016-0299-y.

    Article  PubMed  Google Scholar 

  427. Ledesma-Montes C, Jiménez-Farfán MD, Hernández-Guerrero JC. Idiopathic osteosclerosis in the maxillomandibular area. Radiol Med. 2019;124(1):27–33. https://doi.org/10.1007/s11547-018-0944-x.

    Article  PubMed  Google Scholar 

  428. Sisman Y, Ertas ET, Ertas H, Sekerci AE. The frequency and distribution of idiopathic osteosclerosis of the jaw. Eur J Dent. 2011;5(4):409–14.

    Article  PubMed  PubMed Central  Google Scholar 

  429. Hsu E. Paget’s disease of bone: updates for clinicians. Curr Opin Endocrinol Diabetes Obes. 2019;26(6):329–34. https://doi.org/10.1097/med.0000000000000503.

    Article  PubMed  Google Scholar 

  430. Winn N, Lalam R, Cassar-Pullicino V. Imaging of Paget’s disease of bone. Wien Med Wochenschr. 2017;167(1–2):9–17. https://doi.org/10.1007/s10354-016-0517-3.

    Article  PubMed  Google Scholar 

  431. Kravets I. Paget’s disease of bone: diagnosis and treatment. Am J Med. 2018;131(11):1298–303. https://doi.org/10.1016/j.amjmed.2018.04.028.

    Article  PubMed  Google Scholar 

  432. Merigo E, Manfredi M, Meleti M, Guidotti R, Ripasarti A, Zanzucchi E, D’Aleo P, Corradi D, Corcione L, Sesenna E, Ferrari S, Poli T, Bonaninil M, Vescovi P. Bone necrosis of the jaws associated with bisphosphonate treatment: a report of twenty-nine cases. Acta Biomed. 2006;77(2):109–17.

    PubMed  Google Scholar 

  433. Migliario M, Mergoni G, Vescovi P, Martino I, Alessio M, Benzi L, Renò F, Fusco V. Osteonecrosis of the jaw (ONJ) in osteoporosis patients: report of delayed diagnosis of a multisite case and commentary about risks coming from a restricted ONJ definition. Dent J (Basel). 2017;5(1):13. https://doi.org/10.3390/dj5010013.

    Article  Google Scholar 

  434. Hess LM, Jeter JM, Benham-Hutchins M, Alberts DS. Factors associated with osteonecrosis of the jaw among bisphosphonate users. Am J Med. 2008;121(6):475–483.e473. https://doi.org/10.1016/j.amjmed.2008.01.047.

    Article  PubMed  PubMed Central  Google Scholar 

  435. Hasegawa T, Kawakita A, Ueda N, Funahara R, Tachibana A, Kobayashi M, Kondou E, Takeda D, Kojima Y, Sato S, Yanamoto S, Komatsubara H, Umeda M, Kirita T, Kurita H, Shibuya Y, Komori T. A multicenter retrospective study of the risk factors associated with medication-related osteonecrosis of the jaw after tooth extraction in patients receiving oral bisphosphonate therapy: can primary wound closure and a drug holiday really prevent MRONJ? Osteoporos Int. 2017;28(8):2465–73. https://doi.org/10.1007/s00198-017-4063-7.

    Article  PubMed  Google Scholar 

  436. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL. Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg. 2004;62(5):527–34. https://doi.org/10.1016/j.joms.2004.02.004.

    Article  PubMed  Google Scholar 

  437. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg. 2007;65(3):369–76. https://doi.org/10.1016/j.joms.2006.11.003.

    Article  Google Scholar 

  438. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws—2009 update. J Oral Maxillofac Surg. 2009;67(5 Suppl):2–12. https://doi.org/10.1016/j.joms.2009.01.009.

    Article  PubMed  Google Scholar 

  439. Yee AJ, Raje NS. Denosumab for the treatment of bone disease in solid tumors and multiple myeloma. Future Oncol. 2018;14(3):195–203. https://doi.org/10.2217/fon-2017-0403.

    Article  PubMed  Google Scholar 

  440. Kishimoto H, Noguchi K, Takaoka K. Novel insight into the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Jpn Dent Sci Rev. 2019;55(1):95–102. https://doi.org/10.1016/j.jdsr.2018.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  441. Endo Y, Kumamoto H, Nakamura M, Sugawara S, Takano-Yamamoto T, Sasaki K, Takahashi T. Underlying mechanisms and therapeutic strategies for bisphosphonate-related osteonecrosis of the jaw (BRONJ). Biol Pharm Bull. 2017;40(6):739–50. https://doi.org/10.1248/bpb.b16-01020.

    Article  PubMed  Google Scholar 

  442. Rollason V, Laverrière A, MacDonald LC, Walsh T, Tramèr MR, Vogt-Ferrier NB. Interventions for treating bisphosphonate-related osteonecrosis of the jaw (BRONJ). Cochrane Database Syst Rev. 2016;2(2):Cd008455. https://doi.org/10.1002/14651858.CD008455.pub2.

    Article  PubMed  Google Scholar 

  443. Fliefel R, Tröltzsch M, Kühnisch J, Ehrenfeld M, Otto S. Treatment strategies and outcomes of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with characterization of patients: a systematic review. Int J Oral Maxillofac Surg. 2015;44(5):568–85. https://doi.org/10.1016/j.ijom.2015.01.026.

    Article  PubMed  Google Scholar 

  444. Nieckula P, Stempniewicz A, Tubaja M. Prophylaxis of osteonecrosis in the case of patients treated with bisphosphonates: a review paper. Dent Med Probl. 2018;55(4):425–9. https://doi.org/10.17219/dmp/99021.

    Article  PubMed  Google Scholar 

  445. Ficarra G, Beninati F. Bisphosphonate-related osteonecrosis of the jaws: an update on clinical, pathological and management aspects. Head Neck Pathol. 2007;1(2):132–40. https://doi.org/10.1007/s12105-007-0033-2.

    Article  PubMed  PubMed Central  Google Scholar 

  446. Kalra S, Jain V. Dental complications and management of patients on bisphosphonate therapy: a review article. J Oral Biol Craniofac Res. 2013;3(1):25–30. https://doi.org/10.1016/j.jobcr.2012.11.001.

    Article  PubMed  Google Scholar 

  447. Iglesias JE, Salum FG, Figueiredo MA, Cherubini K. Important aspects concerning alendronate-related osteonecrosis of the jaws: a literature review. Gerodontology. 2015;32(3):169–78. https://doi.org/10.1111/ger.12093.

    Article  PubMed  Google Scholar 

  448. Kilic E, Doganay O. Current management concepts for bisphosphonate-related osteonecrosis of the jaw: a review. Gen Dent. 2018;66(6):e1–5.

    PubMed  Google Scholar 

  449. Dodson TB. Intravenous bisphosphonate therapy and bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg. 2009;67(5 Suppl):44–52. https://doi.org/10.1016/j.joms.2008.12.004.

    Article  PubMed  Google Scholar 

  450. Vescovi P, Nammour S. Bisphosphonate-related osteonecrosis of the jaw (BRONJ) therapy. A critical review. Minerva Stomatol. 2010;59(4):181–203. 204–113

    PubMed  Google Scholar 

  451. Akashi M, Kusumoto J, Takeda D, Shigeta T, Hasegawa T, Komori T. A literature review of perioperative antibiotic administration in surgery for medication-related osteonecrosis of the jaw. Oral Maxillofac Surg. 2018;22(4):369–78. https://doi.org/10.1007/s10006-018-0732-8.

    Article  PubMed  Google Scholar 

  452. Hoefert S, Eufinger H. Relevance of a prolonged preoperative antibiotic regime in the treatment of bisphosphonate-related osteonecrosis of the jaw. J Oral Maxillofac Surg. 2011;69(2):362–80. https://doi.org/10.1016/j.joms.2010.06.200.

    Article  PubMed  Google Scholar 

  453. Edwards BJ, Hellstein JW, Jacobsen PL, Kaltman S, Mariotti A, Migliorati CA. Updated recommendations for managing the care of patients receiving oral bisphosphonate therapy: an advisory statement from the American Dental Association Council on Scientific Affairs. J Am Dent Assoc. 2008;139(12):1674–7. https://doi.org/10.14219/jada.archive.2008.0110.

    Article  PubMed  Google Scholar 

  454. Kaibuchi N, Iwata T, Yamato M, Okano T, Ando T. Multipotent mesenchymal stromal cell sheet therapy for bisphosphonate-related osteonecrosis of the jaw in a rat model. Acta Biomater. 2016;42:400–10. https://doi.org/10.1016/j.actbio.2016.06.022.

    Article  PubMed  Google Scholar 

  455. Freiberger JJ, Feldmeier JJ. Evidence supporting the use of hyperbaric oxygen in the treatment of osteoradionecrosis of the jaw. J Oral Maxillofac Surg. 2010;68(8):1903–6. https://doi.org/10.1016/j.joms.2010.02.001.

    Article  PubMed  Google Scholar 

  456. Mozzati M, Gallesio G, Arata V, Pol R, Scoletta M. Platelet-rich therapies in the treatment of intravenous bisphosphonate-related osteonecrosis of the jaw: a report of 32 cases. Oral Oncol. 2012;48(5):469–74. https://doi.org/10.1016/j.oraloncology.2011.12.004.

    Article  PubMed  Google Scholar 

  457. Anitua E, Begoña L, Orive G. Treatment of hemimandibular paresthesia in a patient with bisphosphonate-related osteonecrosis of the jaw (BRONJ) by combining surgical resection and PRGF-Endoret. Br J Oral Maxillofac Surg. 2013;51(8):e272–4. https://doi.org/10.1016/j.bjoms.2012.08.018.

    Article  PubMed  Google Scholar 

  458. Mozzati M, Arata V, Gallesio G. Tooth extraction in patients on zoledronic acid therapy. Oral Oncol. 2012;48(9):817–21. https://doi.org/10.1016/j.oraloncology.2012.03.009.

    Article  PubMed  Google Scholar 

  459. Anitua E, Zalduendo M, Troya M, Orive G. PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells. Clin Oral Investig. 2016;20(3):513–21. https://doi.org/10.1007/s00784-015-1528-y.

    Article  PubMed  Google Scholar 

  460. Trivedi B, Kesterke MJ, Bhattacharjee R, Weber W, Mynar K, Reddy LV. Craniofacial injuries seen with the introduction of bicycle-share electric scooters in an urban setting. J Oral Maxillofac Surg. 2019;77(11):2292–7. https://doi.org/10.1016/j.joms.2019.07.014.

    Article  PubMed  Google Scholar 

  461. Hull AM, Lowe T, Finlay PM. The psychological impact of maxillofacial trauma: an overview of reactions to trauma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(5):515–20. https://doi.org/10.1067/moe.2003.161.

    Article  PubMed  Google Scholar 

  462. Arslan ED, Solakoglu AG, Komut E, Kavalci C, Yilmaz F, Karakilic E, Durdu T, Sonmez M. Assessment of maxillofacial trauma in emergency department. World J Emerg Surg. 2014;9(1):13. https://doi.org/10.1186/1749-7922-9-13.

    Article  PubMed  PubMed Central  Google Scholar 

  463. Aksoy E, Unlü E, Sensöz O. A retrospective study on epidemiology and treatment of maxillofacial fractures. J Craniofac Surg. 2002;13(6):772–5. https://doi.org/10.1097/00001665-200211000-00012.

    Article  PubMed  Google Scholar 

  464. Gassner R, Tuli T, Hächl O, Rudisch A, Ulmer H. Cranio-maxillofacial trauma: a 10 year review of 9,543 cases with 21,067 injuries. J Craniomaxillofac Surg. 2003;31(1):51–61. https://doi.org/10.1016/s1010-5182(02)00168-3.

    Article  PubMed  Google Scholar 

  465. van den Bergh B, Karagozoglu KH, Heymans MW, Forouzanfar T. Aetiology and incidence of maxillofacial trauma in Amsterdam: a retrospective analysis of 579 patients. J Craniomaxillofac Surg. 2012;40(6):e165–9. https://doi.org/10.1016/j.jcms.2011.08.006.

    Article  PubMed  Google Scholar 

  466. Gandhi S, Ranganathan LK, Solanki M, Mathew GC, Singh I, Bither S. Pattern of maxillofacial fractures at a tertiary hospital in northern India: a 4-year retrospective study of 718 patients. Dent Traumatol. 2011;27(4):257–62. https://doi.org/10.1111/j.1600-9657.2011.00996.x.

    Article  PubMed  Google Scholar 

  467. Hopper RA, Salemy S, Sze RW. Diagnosis of midface fractures with CT: what the surgeon needs to know. Radiographics. 2006;26(3):783–93. https://doi.org/10.1148/rg.263045710.

    Article  PubMed  Google Scholar 

  468. Yokota H, Kurokawa A, Otsuka T, Kobayashi S, Nakazawa S. Significance of magnetic resonance imaging in acute head injury. J Trauma. 1991;31(3):351–7. https://doi.org/10.1097/00005373-199103000-00007.

    Article  PubMed  Google Scholar 

  469. Castilla DM, Dinh CT, Younis R. Pediatric airway management in craniofacial trauma. J Craniofac Surg. 2011;22(4):1175–8. https://doi.org/10.1097/SCS.0b013e31821c00c3.

    Article  PubMed  Google Scholar 

  470. McKellop JA, Bou-Assaly W, Mukherji SK. Emergency head & neck imaging: infections and inflammatory processes. Neuroimaging Clin N Am. 2010;20(4):651–61. https://doi.org/10.1016/j.nic.2010.07.007.

    Article  PubMed  Google Scholar 

  471. Maestre-Vera JR. Treatment options in odontogenic infection. Med Oral Patol Oral Cir Bucal. 2004;9(Suppl 25–31):19–24.

    Google Scholar 

  472. Sánchez R, Mirada E, Arias J, Paño JR, Burgueño M. Severe odontogenic infections: epidemiological, microbiological and therapeutic factors. Med Oral Patol Oral Cir Bucal. 2011;16(5):e670–6. https://doi.org/10.4317/medoral.16995.

    Article  PubMed  Google Scholar 

  473. Laskin DM. Contemporary oral and maxillofacial surgery. Alpha Omegan. 2009;102(2):45. https://doi.org/10.1016/j.aodf.2009.04.004.

    Article  PubMed  Google Scholar 

  474. Thomas MV, Puleo DA. Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res. 2011;90(9):1052–61. https://doi.org/10.1177/0022034510393967.

    Article  PubMed  PubMed Central  Google Scholar 

  475. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005;28(11):1062–8. https://doi.org/10.1177/039139880502801103.

    Article  PubMed  Google Scholar 

  476. Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003;74(3):391–401. https://doi.org/10.1902/jop.2003.74.3.391.

    Article  PubMed  Google Scholar 

  477. Offenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation. J Periodontol. 2008;79(8 Suppl):1577–84. https://doi.org/10.1902/jop.2008.080220.

    Article  PubMed  Google Scholar 

  478. Taub D, Yampolsky A, Diecidue R, Gold L. Controversies in the management of oral and maxillofacial infections. Oral Maxillofac Surg Clin North Am. 2017;29(4):465–73. https://doi.org/10.1016/j.coms.2017.06.004.

    Article  PubMed  Google Scholar 

  479. Rega AJ, Aziz SR, Ziccardi VB. Microbiology and antibiotic sensitivities of head and neck space infections of odontogenic origin. J Oral Maxillofac Surg. 2006;64(9):1377–80. https://doi.org/10.1016/j.joms.2006.05.023.

    Article  PubMed  Google Scholar 

  480. Owtad P, Park JH, Shen G, Potres Z, Darendeliler MA. The biology of TMJ growth modification: a review. J Dent Res. 2013;92(4):315–21. https://doi.org/10.1177/0022034513476302.

    Article  PubMed  Google Scholar 

  481. Liang W, Li X, Gao B, Gan H, Lin X, Liao L, Li C. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods. Exp Ther Med. 2016;11(2):481–9. https://doi.org/10.3892/etm.2015.2937.

    Article  PubMed  Google Scholar 

  482. Kubosch EJ, Lang G, Furst D, Kubosch D, Izadpanah K, Rolauffs B, Sudkamp NP, Schmal H. The potential for synovium-derived stem cells in cartilage repair. Curr Stem Cell Res Ther. 2018;13(3):174–84. https://doi.org/10.2174/1574888X12666171002111026.

    Article  PubMed  Google Scholar 

  483. Zainal Ariffin SH, Kermani S, Megat Abdul Wahab R, Senafi S, Zainal Ariffin Z, Abdul Razak M. In vitro chondrogenesis transformation study of mouse dental pulp stem cells. ScientificWorldJournal. 2012;2012:827149. https://doi.org/10.1100/2012/827149.

    Article  PubMed  PubMed Central  Google Scholar 

  484. Zarb GA, Carlsson GE. Temporomandibular disorders: osteoarthritis. J Orofac Pain. 1999;13(4):295–306.

    PubMed  Google Scholar 

  485. Seymour RL, Crouse VL, Irby WB. Temporomandibular ankylosis secondary to rheumatoid arthritis. Report of a case. Oral Surg Oral Med Oral Pathol. 1975;40(5):584–9. https://doi.org/10.1016/0030-4220(75)90367-9.

    Article  PubMed  Google Scholar 

  486. Korioth TW, Romilly DP, Hannam AG. Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol. 1992;88(1):69–96. https://doi.org/10.1002/ajpa.1330880107.

    Article  PubMed  Google Scholar 

  487. Beek M, Koolstra JH, van Ruijven LJ, van Eijden TM. Three-dimensional finite element analysis of the human temporomandibular joint disc. J Biomech. 2000;33(3):307–16. https://doi.org/10.1016/s0021-9290(99)00168-2.

    Article  PubMed  Google Scholar 

  488. Naeije M, Te Veldhuis AH, Te Veldhuis EC, Visscher CM, Lobbezoo F. Disc displacement within the human temporomandibular joint: a systematic review of a ‘noisy annoyance’. J Oral Rehabil. 2013;40(2):139–58. https://doi.org/10.1111/joor.12016.

    Article  PubMed  Google Scholar 

  489. Farrar WB, McCarty WL Jr. The TMJ dilemma. J Ala Dent Assoc. 1979;63(1):19–26.

    PubMed  Google Scholar 

  490. Murphy MK, MacBarb RF, Wong ME, Athanasiou KA. Temporomandibular disorders: a review of etiology, clinical management, and tissue engineering strategies. Int J Oral Maxillofac Implants. 2013;28(6):e393–414. https://doi.org/10.11607/jomi.te20.

    Article  PubMed  PubMed Central  Google Scholar 

  491. Brooks SL, Westesson PL, Eriksson L, Hansson LG, Barsotti JB. Prevalence of osseous changes in the temporomandibular joint of asymptomatic persons without internal derangement. Oral Surg Oral Med Oral Pathol. 1992;73(1):118–22. https://doi.org/10.1016/0030-4220(92)90168-p.

    Article  PubMed  Google Scholar 

  492. Gynther GW, Holmlund AB, Reinholt FP, Lindblad S. Temporomandibular joint involvement in generalized osteoarthritis and rheumatoid arthritis: a clinical, arthroscopic, histologic, and immunohistochemical study. Int J Oral Maxillofac Surg. 1997;26(1):10–6. https://doi.org/10.1016/s0901-5027(97)80838-7.

    Article  PubMed  Google Scholar 

  493. Galea CJ, Dashow JE, Woerner JE. Congenital abnormalities of the temporomandibular joint. Oral Maxillofac Surg Clin North Am. 2018;30(1):71–82. https://doi.org/10.1016/j.coms.2017.09.003.

    Article  PubMed  Google Scholar 

  494. Kaneyama K, Segami N, Hatta T. Congenital deformities and developmental abnormalities of the mandibular condyle in the temporomandibular joint. Congenit Anom (Kyoto). 2008;48(3):118–25. https://doi.org/10.1111/j.1741-4520.2008.00191.x.

    Article  Google Scholar 

  495. Machon V, Hirjak D, Lukas J. Therapy of the osteoarthritis of the temporomandibular joint. J Craniomaxillofac Surg. 2011;39(2):127–30. https://doi.org/10.1016/j.jcms.2010.04.010.

    Article  PubMed  Google Scholar 

  496. Paniagua B, Cevidanes L, Walker D, Zhu H, Guo R, Styner M. Clinical application of SPHARM-PDM to quantify temporomandibular joint osteoarthritis. Comput Med Imaging Graph. 2011;35(5):345–52. https://doi.org/10.1016/j.compmedimag.2010.11.012.

    Article  PubMed  Google Scholar 

  497. Taylan Filinte G, Akan M, Bilgic I, Karaca M, Akoz T. Chondrogenic effect of the perichondrium graft on the internal derangement and osteoarthritis of the temporomandibular joint of the rabbit. J Craniomaxillofac Surg. 2011;39(5):351–8. https://doi.org/10.1016/j.jcms.2010.09.002.

    Article  PubMed  Google Scholar 

  498. Xaymardan M, Cimini M, Weisel RD, Li RK (2008) Bone marrow stem cell: properties and pluripotency. In: Atala A, Lanza R (eds) Principles of regenerative medicine. Burlington, Elsevier, pp. 268–300.

    Chapter  Google Scholar 

  499. Xaymardan M. Orofacial stem cells for cell-based therapies of local and systemic diseases. In: Innovative research on biosis–abiosis intelligent interface. Tokyo: Elsevier; 2017. p. 89–99.

    Google Scholar 

  500. Farahani RM, Xaymardan M. Platelet-derived growth factor receptor alpha as a marker of mesenchymal stem cells in development and stem cell biology. Stem Cells Int. 2015;2015:362753. https://doi.org/10.1155/2015/362753.

    Article  PubMed  PubMed Central  Google Scholar 

  501. Chong JJ, Xaymardan M, Chandrakanthan V, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A, Biben C, Zoellner H, Colvin EK, Pimanda JE, Biankin AV, Zhou B, Pu WT, Prall OW, Harvey RP. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell. 2011;9(6):527–40. https://doi.org/10.1016/j.stem.2011.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  502. Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H, Matsuzaki Y. Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-α. Nat Protoc. 2012;7:2103–11.

    Article  PubMed  Google Scholar 

  503. Chen K, Man C, Zhang B, Hu J, Zhu SS. Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. Int J Oral Maxillofac Surg. 2013;42(2):240–8. https://doi.org/10.1016/j.ijom.2012.05.030.

    Article  PubMed  Google Scholar 

  504. Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials. 2019;200:35–47. https://doi.org/10.1016/j.biomaterials.2019.02.006.

    Article  PubMed  Google Scholar 

  505. Kim H, Yang G, Park J, Choi J, Kang E, Lee BK. Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Sci Rep. 2019;9(1):13854. https://doi.org/10.1038/s41598-019-50435-2.

    Article  PubMed  PubMed Central  Google Scholar 

  506. Ogasawara N, Kano F, Hashimoto N, Mori H, Liu Y, Xia L, Sakamaki T, Hibi H, Iwamoto T, Tanaka E, Yamamoto A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis. Osteoarthr Cartil. 2020;28(6):831–41. https://doi.org/10.1016/j.joca.2020.03.010.

    Article  Google Scholar 

  507. Ishikawa J, Takahashi N, Matsumoto T, Yoshioka Y, Yamamoto N, Nishikawa M, Hibi H, Ishigro N, Ueda M, Furukawa K, Yamamoto A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis. Bone. 2016;83:210–9. https://doi.org/10.1016/j.bone.2015.11.012.

    Article  PubMed  Google Scholar 

  508. Chen K, Xiong H, Xu N, Shen Y, Huang Y, Liu C. Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and in vivo. Acta Odontol Scand. 2014;72(8):664–72. https://doi.org/10.3109/00016357.2014.888756.

    Article  PubMed  Google Scholar 

  509. Lee J, Taylor SE, Smeriglio P, Lai J, Maloney WJ, Yang F, Bhutani N. Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. FASEB J. 2015;29(8):3399–410. https://doi.org/10.1096/fj.14-269720.

    Article  PubMed  PubMed Central  Google Scholar 

  510. Castro-Vinuelas R, Sanjurjo-Rodriguez C, Pineiro-Ramil M, Hermida-Gomez T, Fuentes-Boquete IM, de Toro-Santos FJ, Blanco-Garcia FJ, Diaz-Prado SM. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater. 2018;36:96–109. https://doi.org/10.22203/eCM.v036a08.

    Article  PubMed  Google Scholar 

  511. MacBarb RF, Chen AL, Hu JC, Athanasiou KA. Engineering functional anisotropy in fibrocartilage neotissues. Biomaterials. 2013;34(38):9980–9. https://doi.org/10.1016/j.biomaterials.2013.09.026.

    Article  PubMed  Google Scholar 

  512. Stapleton TW, Ingram J, Fisher J, Ingham E. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A. 2011;17(1–2):231–42. https://doi.org/10.1089/ten.TEA.2009.0807.

    Article  PubMed  Google Scholar 

  513. Dai J, Wang J, Lu J, Zou D, Sun H, Dong Y, Yu H, Zhang L, Yang T, Zhang X, Wang X, Shen G. The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage. Biomaterials. 2012;33(31):7699–711. https://doi.org/10.1016/j.biomaterials.2012.07.020.

    Article  PubMed  Google Scholar 

  514. Vapniarsky N, Huwe LW, Arzi B, Houghton MK, Wong ME, Wilson JW, Hatcher DC, Hu JC, Athanasiou KA. Tissue engineering toward temporomandibular joint disc regeneration. Sci Transl Med. 2018;10(446):eaaq1802. https://doi.org/10.1126/scitranslmed.aaq1802.

    Article  PubMed  PubMed Central  Google Scholar 

  515. Embree MC, Chen M, Pylawka S, Kong D, Iwaoka GM, Kalajzic I, Yao H, Shi C, Sun D, Sheu TJ, Koslovsky DA, Koch A, Mao JJ. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat Commun. 2016;7:13073. https://doi.org/10.1038/ncomms13073.

    Article  PubMed  PubMed Central  Google Scholar 

  516. Ruscitto A, Scarpa V, Morel M, Pylawka S, Shawber CJ, Embree MC. Notch regulates fibrocartilage stem cell fate and is upregulated in inflammatory TMJ arthritis. J Dent Res. 2020;22034520924656. https://doi.org/10.1177/0022034520924656.

  517. Charnley J. Arthroplasty of the hip. A new operation. Lancet. 1961;1(7187):1129–32. https://doi.org/10.1016/s0140-6736(61)92063-3.

    Article  PubMed  Google Scholar 

  518. Healy WL, Iorio R, Lemos MJ. Athletic activity after joint replacement. Am J Sports Med. 2001;29(3):377–88. https://doi.org/10.1177/03635465010290032301.

    Article  PubMed  Google Scholar 

  519. Zwetyenga N, Amroun S, Wajszczak BL, Moris V. Total temporomandibular joint prostheses. Rev Stomatol Chir Maxillofac Chir Orale. 2016;117(4):285–93. https://doi.org/10.1016/j.revsto.2016.07.016.

    Article  PubMed  Google Scholar 

  520. Driemel O, Braun S, Muller-Richter UD, Behr M, Reichert TE, Kunkel M, Reich R. Historical development of alloplastic temporomandibular joint replacement after 1945 and state of the art. Int J Oral Maxillofac Surg. 2009;38(9):909–20. https://doi.org/10.1016/j.ijom.2009.01.022.

    Article  PubMed  Google Scholar 

  521. Zheng J, Chen X, Jiang W, Zhang S, Chen M, Yang C. An innovative total temporomandibular joint prosthesis with customized design and 3D printing additive fabrication: a prospective clinical study. J Transl Med. 2019;17(1):4. https://doi.org/10.1186/s12967-018-1759-1.

    Article  PubMed  PubMed Central  Google Scholar 

  522. Arakeri G, Brennan PA. Dose-dependent sustained local release of dexamethasone from biodegradable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers in the possible prevention of TMJ re-ankylosis (Arakeri’s TMJ release technique). Med Hypotheses. 2012;78(5):682–6. https://doi.org/10.1016/j.mehy.2012.02.010.

    Article  PubMed  Google Scholar 

  523. Ueki K, Takazakura D, Marukawa K, Shimada M, Nakagawa K, Takatsuka S, Yamamoto E. The use of polylactic acid/polyglycolic acid copolymer and gelatin sponge complex containing human recombinant bone morphogenetic protein-2 following condylectomy in rabbits. J Craniomaxillofac Surg. 2003;31(2):107–14.

    Article  PubMed  Google Scholar 

  524. Kobayashi M, Oka M. Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding. J Biomater Sci Polym Ed. 2004;15(6):741–51. https://doi.org/10.1163/156856204774196135.

    Article  PubMed  Google Scholar 

  525. Stammen JA, Williams S, Ku DN, Guldberg RE. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials. 2001;22(8):799–806. https://doi.org/10.1016/s0142-9612(00)00242-8.

    Article  PubMed  Google Scholar 

  526. Dashnyam K, Lee JH, Mandakhbayar N, Jin GZ, Lee HH, Kim HW. Intra-articular biomaterials-assisted delivery to treat temporomandibular joint disorders. J Tissue Eng. 2018;9:2041731418776514. https://doi.org/10.1177/2041731418776514.

    Article  PubMed  PubMed Central  Google Scholar 

  527. Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev. 2011;17(4):281–99. https://doi.org/10.1089/ten.TEB.2011.0077.

    Article  PubMed  PubMed Central  Google Scholar 

  528. Cushing MC, Anseth KS. Materials science. Hydrogel cell cultures. Science. 2007;316(5828):1133–4. https://doi.org/10.1126/science.1140171.

    Article  PubMed  Google Scholar 

  529. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215–24. https://doi.org/10.1016/0092-8674(82)90027-7.

    Article  PubMed  Google Scholar 

  530. Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K. Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A. 2006;78(1):1–11. https://doi.org/10.1002/jbm.a.30655.

    Article  PubMed  Google Scholar 

  531. Passaretti D, Silverman RP, Huang W, Kirchhoff CH, Ashiku S, Randolph MA, Yaremchuk MJ. Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng. 2001;7(6):805–15. https://doi.org/10.1089/107632701753337744.

    Article  PubMed  Google Scholar 

  532. Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000;122(3):252–60. https://doi.org/10.1115/1.429656.

    Article  PubMed  Google Scholar 

  533. Lammi MJ. Current perspectives on cartilage and chondrocyte mechanobiology. Biorheology. 2004;41(3–4):593–6.

    PubMed  Google Scholar 

  534. Najar M, Krayem M, Merimi M, Burny A, Meuleman N, Bron D, Raicevic G, Lagneaux L. Insights into inflammatory priming of mesenchymal stromal cells: functional biological impacts. Inflamm Res. 2018;67(6):467–77. https://doi.org/10.1007/s00011-018-1131-1.

    Article  PubMed  Google Scholar 

  535. Fawzy El-Sayed KM, Hein D, Dorfer CE. Retinol/inflammation affect stemness and differentiation potential of gingival stem/progenitor cells via Wnt/beta-catenin. J Periodontal Res. 2019;54(4):413–23. https://doi.org/10.1111/jre.12643.

    Article  PubMed  Google Scholar 

  536. Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008;20(2):109–16. https://doi.org/10.1016/j.smim.2007.11.003.

    Article  PubMed  PubMed Central  Google Scholar 

  537. Bayrak A, Tyralla M, Ladhoff J, Schleicher M, Stock UA, Volk HD, Seifert M. Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials. 2010;31(14):3793–803. https://doi.org/10.1016/j.biomaterials.2010.01.120.

    Article  PubMed  Google Scholar 

  538. Brown BN, Chung WL, Almarza AJ, Pavlick MD, Reppas SN, Ochs MW, Russell AJ, Badylak SF. Inductive, scaffold-based, regenerative medicine approach to reconstruction of the temporomandibular joint disk. J Oral Maxillofac Surg. 2012;70(11):2656–68. https://doi.org/10.1016/j.joms.2011.12.030.

    Article  PubMed  PubMed Central  Google Scholar 

  539. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21–34. https://doi.org/10.1038/nrrheum.2014.157.

    Article  PubMed  Google Scholar 

  540. Almarza AJ, Athanasiou KA. Seeding techniques and scaffolding choice for tissue engineering of the temporomandibular joint disk. Tissue Eng. 2004;10(11–12):1787–95. https://doi.org/10.1089/ten.2004.10.1787.

    Article  PubMed  Google Scholar 

  541. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant. 2004;13(5):595–600. https://doi.org/10.3727/000000004783983747.

    Article  PubMed  Google Scholar 

  542. Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med. 2007;1(1):74–9. https://doi.org/10.1002/term.8.

    Article  PubMed  Google Scholar 

  543. Mata M, Milian L, Oliver M, Zurriaga J, Sancho-Tello M, de Llano JJM, Carda C. In vivo articular cartilage regeneration using human dental pulp stem cells cultured in an alginate scaffold: a preliminary study. Stem Cells Int. 2017;2017:8309256. https://doi.org/10.1155/2017/8309256.

    Article  PubMed  PubMed Central  Google Scholar 

  544. Fernandes TL, Cortez de SantAnna JP, Frisene I, Gazarini JP, Gomes Pinheiro CC, Gomoll AH, Lattermann C, Hernandez AJ, Franco Bueno D. Systematic review of human dental pulp stem cells for cartilage regeneration. Tissue Eng Part B Rev. 2020;26(1):1–12. https://doi.org/10.1089/ten.TEB.2019.0140.

    Article  PubMed  Google Scholar 

  545. Aryaei A, Vapniarsky N, Hu JC, Athanasiou KA. Recent tissue engineering advances for the treatment of temporomandibular joint disorders. Curr Osteoporos Rep. 2016;14(6):269–79. https://doi.org/10.1007/s11914-016-0327-y.

    Article  PubMed  PubMed Central  Google Scholar 

  546. Ripley LS. Estimation of in-vivo miscoding rates. J Mol Biol. 1988;202(1):17–34. https://doi.org/10.1016/0022-2836(88)90514-1.

    Article  PubMed  Google Scholar 

  547. Blunk T, Sieminski AL, Gooch KJ, Courter DL, Hollander AP, Nahir AM, Langer R, Vunjak-Novakovic G, Freed LE. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng. 2002;8(1):73–84. https://doi.org/10.1089/107632702753503072.

    Article  PubMed  Google Scholar 

  548. Hanaoka K, Tanaka E, Takata T, Miyauchi M, Aoyama J, Kawai N, Dalla-Bona DA, Yamano E, Tanne K. Platelet-derived growth factor enhances proliferation and matrix synthesis of temporomandibular joint disc-derived cells. Angle Orthod. 2006;76(3):486–92. https://doi.org/10.1043/0003-3219(2006)076[0486:PGFEPA]2.0.CO;2.

    Article  PubMed  Google Scholar 

  549. Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, Asnaghi AM, Baumhoer D, Bieri O, Kretzschmar M, Pagenstert G, Haug M, Schaefer DJ, Martin I, Jakob M. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 2016;388(10055):1985–94. https://doi.org/10.1016/S0140-6736(16)31658-0.

    Article  PubMed  Google Scholar 

  550. de Souza Tesch R, Takamori ER, Menezes K, Carias RBV, Dutra CLM, de Freitas Aguiar M, Torraca TSS, Senegaglia AC, Rebelatto CLK, Daga DR, Brofman PRS, Borojevic R. Temporomandibular joint regeneration: proposal of a novel treatment for condylar resorption after orthognathic surgery using transplantation of autologous nasal septum chondrocytes, and the first human case report. Stem Cell Res Ther. 2018;9(1):94. https://doi.org/10.1186/s13287-018-0806-4.

    Article  PubMed  PubMed Central  Google Scholar 

  551. Brown BN, Chung WL, Pavlick M, Reppas S, Ochs MW, Russell AJ, Badylak SF. Extracellular matrix as an inductive template for temporomandibular joint meniscus reconstruction: a pilot study. J Oral Maxillofac Surg. 2011;69(12):e488–505. https://doi.org/10.1016/j.joms.2011.02.130.

    Article  PubMed  Google Scholar 

  552. Almarza AJ, Brown BN, Arzi B, Angelo DF, Chung W, Badylak SF, Detamore M. Preclinical animal models for temporomandibular joint tissue engineering. Tissue Eng Part B Rev. 2018;24(3):171–8. https://doi.org/10.1089/ten.TEB.2017.0341.

    Article  PubMed  PubMed Central  Google Scholar 

  553. Williams AC. Facial expression of pain: an evolutionary account. Behav Brain Sci. 2002;25(4):439–55. discussion 455-488

    PubMed  Google Scholar 

  554. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, Lacroix-Fralish ML, Matsumiya L, Sorge RE, Sotocinal SG, Tabaka JM, Wong D, van den Maagdenberg AM, Ferrari MD, Craig KD, Mogil JS. Coding of facial expressions of pain in the laboratory mouse. Nat Methods. 2010;7(6):447–9. https://doi.org/10.1038/nmeth.1455.

    Article  PubMed  Google Scholar 

  555. Iwata K, Takeda M, Oh SB, Shinoda M. Neurophysiology of orofacial pain. In: Farah CS, Balasubramaniam R, McCullough MJ, editors. Contemporary oral medicine. New York: Springer; 2017. p. 1–23.

    Google Scholar 

  556. Tsuboi Y, Takeda M, Tanimoto T, Ikeda M, Matsumoto S, Kitagawa J, Teramoto K, Simizu K, Yamazaki Y, Shima A, Ren K, Iwata K. Alteration of the second branch of the trigeminal nerve activity following inferior alveolar nerve transection in rats. Pain. 2004;111(3):323–34. https://doi.org/10.1016/j.pain.2004.07.014.

    Article  PubMed  Google Scholar 

  557. Klasser GD, Goulet J-P, Laat AD, Manfredini D. Classification of orofacial pain. In: Farah CS, Balasubramaniam R, McCullough MJ, editors. Contemporary oral medicine. Cham: Springer; 2017. p. 1–23.

    Google Scholar 

  558. Okeson JP. Orofacial pain: guidelines for assessment, classification, and management. Chicago, IL: Quintessence Publishing; 1996.

    Google Scholar 

  559. Garlet GP, Giannobile WV. Macrophages: the bridge between inflammation resolution and tissue repair? J Dent Res. 2018;97(10):1079–81. https://doi.org/10.1177/0022034518785857.

    Article  PubMed  PubMed Central  Google Scholar 

  560. Goto T, Oh SB, Takeda M, Shinoda M, Sato T, Gunjikake KK, Iwata K. Recent advances in basic research on the trigeminal ganglion. J Physiol Sci. 2016;66(5):381–6. https://doi.org/10.1007/s12576-016-0448-1.

    Article  PubMed  Google Scholar 

  561. Merskey H, Bogduk N (2011) Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. IASP Taxonomy Working Group.

    Google Scholar 

  562. Fortino VR, Pelaez D, Cheung HS. Concise review: stem cell therapies for neuropathic pain. Stem Cells Transl Med. 2013;2(5):394–9. https://doi.org/10.5966/sctm.2012-0122.

    Article  PubMed  PubMed Central  Google Scholar 

  563. Trang T, Beggs S, Salter MW. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biol. 2011;7(1):99–108. https://doi.org/10.1017/S1740925X12000087.

    Article  PubMed  Google Scholar 

  564. Wright EF. Referred craniofacial pain patterns in patients with temporomandibular disorder. J Am Dent Assoc. 2000;131(9):1307–15. https://doi.org/10.14219/jada.archive.2000.0384.

    Article  PubMed  Google Scholar 

  565. Cairns BE, Hu JW, Arendt-Nielsen L, Sessle BJ, Svensson P. Sex-related differences in human pain and rat afferent discharge evoked by injection of glutamate into the masseter muscle. J Neurophysiol. 2001;86(2):782–91. https://doi.org/10.1152/jn.2001.86.2.782.

    Article  PubMed  Google Scholar 

  566. Ossipov MH. Growth factors and neuropathic pain. Curr Pain Headache Rep. 2011;15(3):185–92. https://doi.org/10.1007/s11916-011-0183-5.

    Article  PubMed  Google Scholar 

  567. Cova L, Armentero MT, Zennaro E, Calzarossa C, Bossolasco P, Busca G, Lambertenghi Deliliers G, Polli E, Nappi G, Silani V, Blandini F. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res. 2010;1311:12–27. https://doi.org/10.1016/j.brainres.2009.11.041.

    Article  PubMed  Google Scholar 

  568. Wang J, Ding F, Gu Y, Liu J, Gu X. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res. 2009;1262:7–15. https://doi.org/10.1016/j.brainres.2009.01.056.

    Article  PubMed  Google Scholar 

  569. Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, Hord A, Csete M. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg. 2007;104(4):944–8. https://doi.org/10.1213/01.ane.0000258021.03211.d0.

    Article  PubMed  Google Scholar 

  570. Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, de Novellis V, Rossi F, Maione S. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci. 2010;67(4):655–69. https://doi.org/10.1007/s00018-009-0202-4.

    Article  PubMed  Google Scholar 

  571. Reid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22. https://doi.org/10.1016/j.neuroscience.2011.09.064.

    Article  PubMed  Google Scholar 

  572. De Francesco F, Tirino V, Desiderio V, Ferraro G, D’Andrea F, Giuliano M, Libondi G, Pirozzi G, De Rosa A, Papaccio G. Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. PLoS One. 2009;4(8):e6537. https://doi.org/10.1371/journal.pone.0006537.

    Article  PubMed  PubMed Central  Google Scholar 

  573. Vickers ER, Karsten E, Flood J, Lilischkis R. A preliminary report on stem cell therapy for neuropathic pain in humans. J Pain Res. 2014;7:255–63. https://doi.org/10.2147/JPR.S63361.

    Article  PubMed  PubMed Central  Google Scholar 

  574. Manion J, Khuong T, Harney D, Littleboy JB, Ruan T, Loo L, Costigan M, Larance M, Caron L, Neely GG. Human induced pluripotent stem cell-derived GABAergic interneuron transplants attenuate neuropathic pain. Pain. 2020;161(2):379–87. https://doi.org/10.1097/j.pain.0000000000001733.

    Article  PubMed  Google Scholar 

  575. Jergova S, Gajavelli S, Varghese MS, Shekane P, Sagen J. Analgesic effect of recombinant GABAergic cells in a model of peripheral neuropathic pain. Cell Transplant. 2016;25(4):629–43. https://doi.org/10.3727/096368916X690782.

    Article  PubMed  Google Scholar 

  576. Meents JE, Bressan E, Sontag S, Foerster A, Hautvast P, Rosseler C, Hampl M, Schuler H, Goetzke R, Le TKC, Kleggetveit IP, Le Cann K, Kerth C, Rush AM, Rogers M, Kohl Z, Schmelz M, Wagner W, Jorum E, Namer B, Winner B, Zenke M, Lampert A. The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients. Pain. 2019;160(6):1327–41. https://doi.org/10.1097/j.pain.0000000000001511.

    Article  PubMed  PubMed Central  Google Scholar 

  577. Namer B, Schmidt D, Eberhardt E, Maroni M, Dorfmeister E, Kleggetveit IP, Kaluza L, Meents J, Gerlach A, Lin Z, Winterpacht A, Dragicevic E, Kohl Z, Schuttler J, Kurth I, Warncke T, Jorum E, Winner B, Lampert A. Pain relief in a neuropathy patient by lacosamide: proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine. 2019;39:401–8. https://doi.org/10.1016/j.ebiom.2018.11.042.

    Article  PubMed  Google Scholar 

  578. Pereira T, Gartner A, Amorim I, Almeida A, Caseiro AR, Armada-da-Silva PA, Amado S, Fregnan F, Varejao AS, Santos JD, Bartolo PJ, Geuna S, Luis AL, Mauricio AC. Promoting nerve regeneration in a neurotmesis rat model using poly(DL-lactide-epsilon-caprolactone) membranes and mesenchymal stem cells from the Wharton’s jelly: in vitro and in vivo analysis. Biomed Res Int. 2014;2014:302659. https://doi.org/10.1155/2014/302659.

    Article  PubMed  PubMed Central  Google Scholar 

  579. Huang T, He D, Kleiner G, Kuluz J. Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. J Spinal Cord Med. 2007;30(Suppl 1):S35–40. https://doi.org/10.1080/10790268.2007.11753967.

    Article  PubMed  PubMed Central  Google Scholar 

  580. Janebodin K, Horst OV, Ieronimakis N, Balasundaram G, Reesukumal K, Pratumvinit B, Reyes M. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One. 2011;6(11):e27526. https://doi.org/10.1371/journal.pone.0027526.

    Article  PubMed  PubMed Central  Google Scholar 

  581. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, Brone B, Lambrichts I, Martens W. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015;24(3):296–311. https://doi.org/10.1089/scd.2014.0117.

    Article  PubMed  Google Scholar 

  582. Luke AM, Patnaik R, Kuriadom S, Abu-Fanas S, Mathew S, Shetty KP. Human dental pulp stem cells differentiation to neural cells, osteocytes and adipocytes-An in vitro study. Heliyon. 2020;6(1):e03054. https://doi.org/10.1016/j.heliyon.2019.e03054.

    Article  PubMed  PubMed Central  Google Scholar 

  583. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med. 2011;5(10):823–30. https://doi.org/10.1002/term.387.

    Article  PubMed  Google Scholar 

  584. Yang C, Li X, Sun L, Guo W, Tian W. Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng. 2017;14(2):026005. https://doi.org/10.1088/1741-2552/aa596b.

    Article  PubMed  Google Scholar 

  585. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012;122(1):80–90. https://doi.org/10.1172/JCI59251.

    Article  PubMed  Google Scholar 

  586. Nakamura M, Okano H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res. 2013;23(1):70–80. https://doi.org/10.1038/cr.2012.171.

    Article  PubMed  Google Scholar 

  587. Csobonyeiova M, Polak S, Zamborsky R, Danisovic L. Recent Progress in the regeneration of spinal cord injuries by induced pluripotent stem cells. Int J Mol Sci. 2019;20(15):3838. https://doi.org/10.3390/ijms20153838.

    Article  PubMed Central  Google Scholar 

  588. Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, Ikada Y, Nakamura H. Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res A. 2014;102(5):1370–8. https://doi.org/10.1002/jbm.a.34816.

    Article  PubMed  Google Scholar 

  589. Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, Li S. Induced pluripotent stem cells for neural tissue engineering. Biomaterials. 2011;32(22):5023–32. https://doi.org/10.1016/j.biomaterials.2011.03.070.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camile S. Farah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farah, C.S. et al. (2021). Regenerative Approaches in Oral Medicine. In: Hosseinpour, S., Walsh, L.J., Moharamzadeh, K. (eds) Regenerative Approaches in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-59809-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59809-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59808-2

  • Online ISBN: 978-3-030-59809-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics