Skip to main content

Application of AI Techniques for COVID-19 in IoT and Big Data Era: A Survey

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning for COVID-19

Part of the book series: Studies in Computational Intelligence ((SCI,volume 924))

Abstract

The infectious novel coronavirus (COVID-19) is said to have originated from China. The COVID-19 pandemic has spread over a hundred nations and regions on the planet and has fundamentally influenced each part of our day-by-day lives. As of present, the quantities of COVID-19 cases and deaths despite everything increment fundamentally and do not indicate a very much controlled circumstance; over a thousand cases have been accounted for around the world. Artificial intelligence (AI) goal is to adapt to human conceptual cutoff points. It is getting an outlook on human organizations, filled by the developing accessibility of helpful clinical information and the snappy movement of keen systems. Inspired by ongoing progress and uses of the artificial intelligence (AI) and Big Data in different territories, in this survey we target their underlying significance in reacting to the coronavirus flare-up and forestalling the extreme effect of the epidemic. In this survey, we initially summarize the current territory of AI applications in clinical organizations while combating COVID-19. Besides, we feature the use of Big Data while cubing this infection. We additionally review the feature, difficulties, and issues related to discovering solutions. An overview was made in ordering AI and Big Data, at that point distinguishing their applications in battling against COVID-19. Likewise, an accentuation has been made on districts that use cloud computing in battling different comparable infections to COVID-19 and COVID-19 itself. The explored strategies put forth propel clinical data investigation with a precision of up to 90%. We further end up with a point-by-point conversation about how AI usage can be in a favorable position in fighting different comparative infections. This paper gives specialists and researchers new bits of knowledge into the manners in which AI and Big Data can be used in improving the COVID-19 circumstance and drive further examinations in halting the outbreak of the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Situation update worldwide, as of 9 April 2020. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (2020)

  2. Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (2020)

  3. Coronavirus (COVID-19). https://www.cdc.gov/coronavirus/2019-nCoV/index.html (2020)

  4. White House announces new partnership to unleash U.S. supercomputing resources to fight COVID-19. https://www.whitehouse.gov/briefings-statements (2020)

  5. arXiv announces new COVID-19 quick search. https://blogs.cornell.edu/arxiv/2020/03/30/new-covid-19-quick-search/ (2020)

  6. Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, R.: World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76 (2020)

    Article  Google Scholar 

  7. Roser, M., Ritchie, H., Ortiz-Ospina, E., Hasell, J.: Coronavirus (COVID-19) cases. https://ourworldindata.org/covid-cases (2020)

  8. Fang, L., Karakiulakis, G., Roth, M.: Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet. Respir. Med. 8(4), e21 (2020)

    Article  Google Scholar 

  9. Wong, S.H., Lui, R.N.S., Sung, J.J.Y.: Covid-19 and the digestive system. J. Gastroenterol. Hepatol. 35, 744–748 (2020)

    Article  Google Scholar 

  10. Baldwin, R., Tomiura, E.: Thinking ahead about the trade impact of COVID-19. Economics in the Time COVID-19, p. 59 (2020)

    Google Scholar 

  11. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team: Vital surveillances, the epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) China, 2020. China CDC Weekly. 2(8), 113–122 (2020)

    Article  Google Scholar 

  12. Chen, H., Guo, J., Wang, C., Luo, F., Yu, X., Zhang, W., Li, J., Zhao, D., Xu, D., Gong, Q., Liao, J., Yang, H., Hou, W., Zhang, Y.: Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 395(10226), 809–815 (2020)

    Article  Google Scholar 

  13. Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., Peng, Z.: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J. Am. Med. Assoc. 323(11), 1061 (2020)

    Article  Google Scholar 

  14. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., Zhang, L.: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395(10223), 507–513 (2020)

    Article  Google Scholar 

  15. Jiang, F., Deng, L., Zhang, L., Cai, Y., Cheung, C.W., Xia, Z.: Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med. 35, 1545–1549 (2020). https://doi.org/10.1007/s11606-020-05762-w

    Article  Google Scholar 

  16. Salehi, S., Abedi, A., Balakrishnan, S., Gholamrezanezhad, A.: Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. Am. J. Roentgenol. 215, 87–93 (2020). https://doi.org/10.2214/AJR.20.23034

    Article  Google Scholar 

  17. Singhal, T.: A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatri. 87(4), 281–286 (2020)

    Article  Google Scholar 

  18. World Health Organisation (WHO): Novel coronavirus (2019-nCoV). Situation report-SS. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200315-sitrep-55-covid-19.pdf?sfvrsn=33daa5cb_6 (2020)

  19. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  20. Beck, B.R., Shin, B., Choi, Y., Park, S., Kang, K.: Predicting commercially available antiviral drugs that may act on the novel coronavirus (2019-nCoV), Wuhan, China through a drug-target interaction deep learning model. BioRxiv (2020)

    Google Scholar 

  21. Zhavoronkov, A., Aladinskiy, V., Zhebrak, A., Zagribelnyy, B., Terentiev, V., Bezrukov, D.S., Polykovskiy, D., Shayakhmetov, R., Filimonov, A., Orekhov, P., Yan, Y., Popova, O., Vanhaelen, Q., Aliper, A., Ivanenkov, Y.: Potential COVID-2019 3C-like protease inhibitors designed using generative deep learning approaches. ChemRxi (2020)

    Google Scholar 

  22. Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., Wang, X.: Deep learning-based detection for COVID-19 from chest CT using weak label. MedRxiv (2020)

    Google Scholar 

  23. Hu, Z., Ge, Q., Jin, L., Xiong, M.: Artificial intelligence forecasting of COVID-19 in China. arXiv Preprint arXiv:2002.07112 (2020)

    Google Scholar 

  24. COVID-19 open research dataset challenge (CORD-19): an AI challenge with AI2, CZI, MSR, Georgetown, NIH & The White House. www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge (2020)

  25. IBM releases novel AI-powered technologies to help health and research community accelerate the discovery of medical insights and treatments for COVID-19. https://www.ibm.com/blogs/research/2020/04/ai-powered-technologies-accelerate-discovery-covid-19/ (2020)

  26. Mamoshina, P., Vieira, A., Putin, E., Zhavoronkov, A.: Applications of deep learning in biomedicine. Mol. Pharm. 13(5), 1445–1454 (2016)

    Article  Google Scholar 

  27. Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., Zhou, Y., Bo, X., Xie, Z.: Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics. 16(1), 17–32 (2018)

    Article  Google Scholar 

  28. Ekins, S., Puhl, A.C., Zorn, K.M., Lane, T.R., Russo, D.P., Klein, J.J., Hickey, A.J., Clark, A.M.: Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18(5), 435 (2019)

    Article  Google Scholar 

  29. Hu, F., Jiang, J., Yin, P.. Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model. arXiv Preprint:2003.00728 (2020)

    Google Scholar 

  30. Ge, Y., Tian, T., Huang, S., Wan, F., Li, J., Li, S., Yang, H., Hong, L., Wu, N., Yuan, E., et al.: A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. BioRxiv (2020)

    Google Scholar 

  31. Savioli, N.: One-shot screening of potential peptide ligands on HR1 domain in COVID-19 glycosylated spike (S) protein with deep Siamese network. arXiv Preprint arXiv:2004.02136 (2020)

    Google Scholar 

  32. Ton, A.-T., Gentile, F., Hsing, M., Ban, F., Cherkasov, A.: Rapid identification of potential inhibitors of sars-cov-2 main protease by deep docking of 1.3 billion compounds. Mol. Inform. 39, e2000028 (2020)

    Article  Google Scholar 

  33. Hofmarcher, M., Mayr, A., Rumetshofer, A., Ruch, P., Renz, P., Schimunek, J., Seidl, P., Vall, A., Widrich, M., Hochreiter, S., et al.: Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks. Available at SSRN 3561442 (2020)

    Google Scholar 

  34. Ong, E., Wong, M.U., Huffman, A., He, Y.: COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. BioRxiv (2020)

    Google Scholar 

  35. Jumper, J., Tunyasuvunakool, K., Kohli, P., Hassabis, D., Team, A.: Computational predictions of protein structures associated with COVID-19. DeepMind (2020)

    Google Scholar 

  36. Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A.W., Bridgland, A., et al.: Improved protein structure prediction using potentials from deep learning. Nature. 577, 706–710 (2020)

    Article  Google Scholar 

  37. Strokach, A., Becerra, D., Corbi-Verge, C., Perez-Riba, A., Kim, P.M.: Fast and flexible design of novel proteins using graph neural networks. BioRxiv (2020)

    Google Scholar 

  38. Chenthamarakshan, V., Das, P., Padhi, I., Strobelt, H., Lim, K.W., Hoover, B., Hoffman, S.C., Mojsilovic, A.: Target-specific and selective drug design for COVID-19 using deep generative models. arXiv preprint arXiv:2004.01215 (2020)

    Google Scholar 

  39. Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Br¨unink, S., Schneider, J., Schmidt, M.L., et al.: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RTPCR. Eur. Secur. 25(3), 2000045 (2020)

    Google Scholar 

  40. Fomsgaard, A.S., Rosenstierne, M.W.: An alternative workflow for molecular detection of SARS-CoV-2-escape from the NA extraction kit-shortage. medRxiv (2020)

    Google Scholar 

  41. Maghdid, H.S., Ghafoor, K.Z., Sadiq, A.S., Curran, K., Rabie, K.: A novel AI-enabled framework to diagnose coronavirus COVID-19 using smartphone embedded sensors: design study. arXiv preprint arXiv:2003.07434 (2020)

    Google Scholar 

  42. Rao, A.S.S., Vazquez, J.A.: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey in the populations when cities/towns are under quarantine. Infect. Control Hosp. Epidemiol. 4, 1–5 (2020)

    Google Scholar 

  43. Silva, B.M., Rodrigues, J.J., de la Torre Díez, I., López-Coronado, M., Saleem, K.: Mobile-health: a review of current state in 2015. J. Biomed. Inform. 56, 265–272 (2015)

    Article  Google Scholar 

  44. Pham, Q.-V., Fang, F., Ha, V. N., Le, M., Ding, Z., Le, L.B., Hwang, W.-J.: A survey of multi-access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-the-art. CoRR. arxiv.org/abs/1906.08452 (2019)

  45. Wang, L., Wong, A.: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. arXiv preprint arXiv:2003.09871 (2020)

    Google Scholar 

  46. Gozes, O., Frid-Adar, M., Sagie, N., Zhang, H., Ji, W., Greenspan, H.: Coronavirus detection and analysis on chest CT with deep learning. arXiv preprint arXiv:2004.02640 (2020)

    Google Scholar 

  47. Barstugan, M., Ozkaya, U., Ozturk, S.: Coronavirus (COVID-19) classification using CT images by machine learning methods. arXiv preprint arXiv:2003.09424 (2020)

    Google Scholar 

  48. Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P.D., Zhang, H., Ji, W., Bernheim, A., Siegel, E.: Rapid AI development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv preprint arXiv:2003.05037 (2020)

    Google Scholar 

  49. Cai Dai, W., Wen Zhang, H., Yu, J., Jian Xu, H., Chen, H., Ping Luo, S., Zhang, H., Hong Liang, L., Liu Wu, X., Lei, Y., Lin, F.: CT imaging and differential diagnosis of COVID-19. Can. Assoc. Radiol. J. 71(2), 195–200 (2020)

    Article  Google Scholar 

  50. Wang, S., B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, X. Meng et al., A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). medRxiv (2020)

    Google Scholar 

  51. Ozkaya, U., Ozturk, S., Barstugan, M.: Coronavirus (COVID-19) classification using deep features fusion and ranking technique. arXiv preprint arXiv:2004.03698 (2020)

    Google Scholar 

  52. Asnaoui, K.E., Chawki, Y., Idri, A.: Automated methods for detection and classification pneumonia based on X-ray images using deep learning. arXiv preprint arXiv:2003.14363 (2020)

    Google Scholar 

  53. Khalifa, N.E.M., Taha, M.H.N., Hassanien, A.E., Elghamrawy, S.: Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset. arXiv preprint arXiv:2004.01184 (2020)

    Google Scholar 

  54. Apostolopoulos, I.D., Bessiana, T.: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. arXiv preprint arXiv:2003.11617 (2020)

    Google Scholar 

  55. Narin, A., Kaya, C., Pamuk, Z.: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. arXiv preprint arXiv:2003.10849 (2020)

    Google Scholar 

  56. Chaganti, S., Balachandran, A., Chabin, G., Cohen, S., Flohr, T., Georgescu, B., Grenier, P., Grbic, S., Liu, S., Mellot, F., Murray, N., Nicolaou, S., Parker, W., Re, T., Sanelli, P., Sauter, A.W., Xu, Z., Yoo, Y., Ziebandt, V., Comaniciu, D.: Quantification of tomographic patterns associated with COVID-19 from chest CT. arXiv preprint arXiv:2004.01279 (2020)

    Google Scholar 

  57. Shan, F., Gao, Y., Wang, J., Shi, W., Shi, N., Han, M., Xue, Z., Shen, D., Shi, Y.: Lung infection quantification of COVID-19 in CT images with deep learning. arXiv preprint arXiv:2003.04655 (2020)

    Google Scholar 

  58. Ghoshal, B., Tucker, A.: Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection. arXiv preprint arXiv:2003.10769 (2020)

    Google Scholar 

  59. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630–645. Springer, New York (2016)

    Google Scholar 

  60. Tang, Z., Zhao, W., Xie, X., Zhong, Z., Shi, F., Liu, J., Shen, D.: Severity assessment of coronavirus disease 2019 (COVID-19) using quantitative features from chest CT images. arXiv preprint arXiv:2003.11988 (2020)

    Google Scholar 

  61. Imran, A., Posokhova, I., Qureshi, H.N., Masood, U., Riaz, S., Ali, K., John, C.N., Nabeel, M.: AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. arXiv preprint arXiv:2004.01275 (2020)

    Google Scholar 

  62. Ganasegeran, K., Abdulrahman, S.A.: Artificial Intelligence Applications in Tracking Health Behaviors During Disease Epidemics, pp. 141–155. Springer, Cham (2020)

    Google Scholar 

  63. Hou, Z., Du, F., Jiang, H., Zhou, X., Lin, L.: Assessment of public attention, risk perception, emotional and behavioural responses to the COVID-19 outbreak: social media surveillance in China. In: Risk Perception, Emotional and Behavioural Responses to the COVID-19 Outbreak: Social Media Surveillance in China (3/6/2020) (2020)

    Google Scholar 

  64. Schuller, B.W., Schuller, D.M., Qian, K., Liu, J., Zheng, H., Li, X.: COVID-19 and computer audition: An overview on what speech & sound analysis could contribute in the SARS-CoV-2 corona crisis. arXiv preprint arXiv:2003.11117 (2020)

    Google Scholar 

  65. Ye, Y., Hou, S., Fan, Y., Qian, Y., Zhang, Y., Sun, S., Peng, Q., Laparo, K.: Satellite: an AI-driven system and benchmark datasets for hierarchical community-level risk assessment to help combat COVID-19. arXiv preprint arXiv:2003.12232 (2020)

    Google Scholar 

  66. Liu, D., Clemente, L., Poirier, C., Ding, X., Chinazzi, M., Davis, J.T., Vespignani, A., Santillana, M.: A machine learning methodology for real-time forecasting of the 2019-2020 COVID-19 outbreak using internet searches, news alerts, and estimates from mechanistic models. arXiv preprint arXiv:2004.04019 (2020)

    Google Scholar 

  67. Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Pastore, A., Piontti, Y., Mu, K., Rossi, L., Sun, K., Viboud, C., Xiong, X., Yu, H., Halloran, M.E., Longini, I.M., Vespignani, A.: The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 368, 395–400 (2020)

    Article  Google Scholar 

  68. Chen, Y.-C., Lu, P.-E., Chang, C.-S.: A time-dependent SIR model for COVID-19. arXiv preprint arXiv:2003.00122 (2020)

    Google Scholar 

  69. Biswas, K., Sen, P.: Space-time dependence of corona virus (COVID-19) outbreak. arXiv preprint arXiv:2003.03149 (2020)

    Google Scholar 

  70. Crokidakis, N.: Data analysis and modeling of the evolution of COVID-19 in Brazil. arXiv preprint arXiv:2003.12150 (2020)

    Google Scholar 

  71. Gaeta, G.: A simple SIR model with a large set of asymptomatic infectives. arXiv preprint arXiv:2003.08720 (2020)

    Google Scholar 

  72. Dandekar, R., Barbastathis, G.: Neural network aided quarantine control model estimation of COVID spread in Wuhan, China. arXiv preprint arXiv:2003.09403 (2020)

    Google Scholar 

  73. Neural network aided quarantine control model estimation of global Covid-19 spread. arXiv preprint arXiv:2004.02752 (2020)

    Google Scholar 

  74. Perone, G.: An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy (2020)

    Google Scholar 

  75. Magdon-Ismail, M.: Machine learning the phenomenology of COVID-19 from early infection dynamics. arXiv preprint arXiv:2003.07602 (2020)

    Google Scholar 

  76. Hu, Z., Ge, Q., Li, S., Boerwincle, E., Jin, E., Xiong, M.: Forecasting and evaluating intervention of COVID-19 in the World. arXiv preprint arXiv:2003.09800 (2020)

    Google Scholar 

  77. Pal, R., Sekh, A.A., Kar, S., Prasad, D.K.: Neural network based country wise risk prediction of COVID-19. arXiv preprint arXiv:2004.00959 (2020)

    Google Scholar 

  78. Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A.V.: Big data analytics: a survey. J. Big Data. 2(1), 21 (2015)

    Article  Google Scholar 

  79. Priyanka, K., Kulennavar, N.: A survey on big data analytics in health care. Int. J. Comput. Sci. Inf. Technol. 5(4), 5865–5868 (2014)

    Google Scholar 

  80. Cottle, M., Hoover, W., Kanwal, S., Kohn, M., Strome, T., Treister, N.: Transforming Health Care through Big Data Strategies for Leveraging Big Data in the Health Care Industry. Institute for Health Technology Transformation. http://ihealthtran.com/big-data-in-healthcare (2013)

    Google Scholar 

  81. Chae, S., Kwon, S., Lee, D.: Predicting infectious disease using deep learning and big data. Int. J. Environ. Res. Public Health. 15(8), 1596 (2018)

    Article  Google Scholar 

  82. Bansal, S., Chowell, G., Simonsen, L., Vespignani, A., Viboud, C.: Big data for infectious disease surveillance and modeling. J. Infect. Dis. 214(suppl 4), S375–S379 (2016)

    Article  Google Scholar 

  83. Eisenstein, M.: Infection forecasts powered by big data. Nature. 555(7695) (2018)

    Google Scholar 

  84. Improving epidemic surveillance and response: big data is dead, long live big data. https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30059-5/fulltext (2020)

  85. Big data in the time of coronavirus (COVID-19). https://www.forbes.com/sites/ciocentral/2020/03/30/big-data-in-the-time-of-coronavirus-fCOVID-19g/ (2020)

  86. Understanding the COVID-19 pandemic as a big data analytics issue. https://healthitanalytics.com/news/understanding-the-fCOVID-19g-pandemic-as-a-big-data-analytics-issue (2020)

  87. Ahmed, S.F., Quadeer, A.A., McKay, M.R.: Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 12(3), 254 (2020)

    Article  Google Scholar 

  88. Banerjee, A., Santra, D., Maiti, S.: Energetics based epitope screening in SARS CoV-2 (COVID 19) spike glycoprotein by immunoinformatic analysis aiming to a suitable vaccine development. bioRxiv (2020)

    Google Scholar 

  89. Sarkar, B., Ullah, M.A., Johora, F.T., Taniya, M.A., Araf, Y.: The essential facts of Wuhan novel coronavirus outbreak in China and epitope-based vaccine designing against 2019-nCoV. BioRxiv (2020)

    Google Scholar 

  90. Abdelmageed, M.I., Abdelmoneim, A.H., Mustafa, M.I., Elfadol, N.M., Murshed, N.S., Shantier, S.W., Makhawi, A.M.: Design of multi epitope-based peptide vaccine against e protein of human 2019-ncov: an immunoinformatics approach. BioRxiv (2020)

    Google Scholar 

  91. Li, Z., Li, X., Huang, Y.-Y., Wu, Y., Zhou, L., Liu, R., Wu, D., Zhang, L., Liu, H., Xu, X., et al.: FEP-based screening prompts drug repositioning against COVID-19. bioRxiv (2020)

    Google Scholar 

  92. Ge, Y., Tian, T., Huang, S., Wan, F., Li, J., Li, S., Yang, H., Hong, L., Wu, N., Yuan, E., et al.: A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. bioRxiv (2020)

    Google Scholar 

  93. Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., Colaneri, M., et al.: A SIDARTHE model of COVID-19 epidemic in Italy. arXiv preprint arXiv:2003.09861 (2020)

    Google Scholar 

  94. Brauer, F., Castillo-Chavez, C., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology, vol. 2. Springer, New York (2012)

    Book  Google Scholar 

  95. Chen, B., Shi, M., Ni, X., Ruan, L., Jiang, H., Yao, H., Wang, M., Song, Z., Zhou, Q., Ge, T.: Visual data analysis and simulation prediction for COVID-19. arXiv preprint arXiv:2002.07096 (2020)

    Google Scholar 

  96. Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L.: Epidemic analysis of COVID-19 in China by dynamical modeling. arXiv preprint arXiv:2002.06563 (2020)

    Google Scholar 

  97. Táatrai, D., Várallyay, Z.: COVID-19 epidemic outcome predictions based on logistic fitting and estimation of its reliability. arXiv preprint arXiv:2003.14160 (2020)

    Google Scholar 

  98. Strzelecki, A.: The second worldwide wave of interest in coronavirus since the COVID-19 outbreaks in South Korea, Italy and Iran: a Google trends study. arXiv preprint arXiv:2003.10998 (2020)

    Google Scholar 

  99. Long, Y.-S., Zhai, Z.-M., Han, L.-L., Kang, J., Li, Y.-L., Lin, Z.-H., Zeng, L., Wu, D.-Y., Hao, C.-Q., Tang, M., et al.: Quantitative assessment of the role of undocumented infection in the 2019 novel coronavirus (COVID-19) pandemic. arXiv preprint arXiv:2003.12028 (2020)

    Google Scholar 

  100. Heroy, S.: Metropolitan-scale COVID-19 outbreaks: how similar are they?. arXiv preprint arXiv:2004.01248 (2020)

    Google Scholar 

  101. Garattini, C., Raffle, J., Aisyah, D.N., Sartain, F., Kozlakidis, Z.: Big data analytics, infectious diseases and associated ethical impacts. Philos. Technol. 32(1), 69–85 (2019)

    Article  Google Scholar 

  102. Li, C., Debruyne, D.N., Spencer, J., Kapoor, V., Liu, L.Y., Zhou, B., Lee, L., Feigelman, R., Burdon, G., Liu, J., et al.: High sensitivity detection of coronavirus SARS-CoV-2 using multiplex PCR and a multiplex-PCR-based metagenomic method. bioRxiv (2020)

    Google Scholar 

  103. Ortea, I., Bock, J.-O.: Re-analysis of SARS-CoV-2 infected host cell proteomics time-course data by impact pathway analysis and network analysis. A potential link with inflammatory response. BioRxiv (2020)

    Google Scholar 

  104. Brann, D., Tsukahara, T., Weinreb, C., Logan, D.W., Datta, S.R.: Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients. bioRxiv (2020)

    Google Scholar 

  105. Lon, J.R., Bai, Y., Zhong, B., Cai, F., Du, H.: Prediction and evolution of B cell epitopes of surface protein in SARS-CoV-2. bioRxiv (2020)

    Google Scholar 

  106. Jin, Y.-H., Cai, L., Cheng, Z.-S., Cheng, H., Deng, T., Fan, Y.-P., Fang, C., Huang, D., Huang, L.-Q., Huang, Q., et al.: A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version). Mil. Med. Res. 7(1), 4 (2020)

    Google Scholar 

  107. Is big data effective in response to coronavirus outbreak? https://www.analyticsinsight.net/big-data-effective-response-coronavirus-outbreak/ (2020)

  108. Zhao, X., Liu, X., Li, X.: Tracking the spread of novel coronavirus (2019-ncov) based on big data. medRxiv (2020)

    Google Scholar 

  109. Zhou, C., Su, F., Pei, T., Zhang, A., Du, Y., Luo, B., Cao, Z., Wang, J., Yuan, W., Zhu, Y., et al.: COVID-19: challenges to GIS with big data. Geogr. Sustain. 1, 77–87 (2020)

    Google Scholar 

  110. Castorina, P., Iorio, A., Lanteri, D.: Data analysis on coronavirus spreading by macroscopic growth laws. arXiv preprint arXiv:2003.00507 (2020)

    Google Scholar 

  111. Notari, A.: Temperature dependence of COVID-19 transmission. arXiv preprint arXiv:2003.12417 (2020)

    Google Scholar 

  112. Lampos, V., Moura, S., Yom-Tov, E., Cox, I.J., McKendry, R., Edelstein, M.: Tracking COVID-19 using online search. arXiv preprint arXiv:2003.08086 (2020)

    Google Scholar 

  113. How China is using AI and big data to fight the coronavirus. https://www.aljazeera.com/news/2020/03/fChinag-ai-big-data-combat-coronavirus-outbreak-200301063901951.html (2020)

  114. How China is using big data and artificial intelligence to fight coronavirus. https://www.internetsearchinc.com/how-fChinag-is-using-big-data-and-artificial-intelligence-to-fight-coronavirus/ (2020)

  115. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on IoT security: application areas, security threats, and solution architectures. IEEE Access. 7, 82721–82743 (2019)

    Article  Google Scholar 

  116. Rouse, M.: What is IoMT (Internet of Medical Things) or Healthcare IoT?-Definition From WhatIs.com. IoT Agenda. https://internetofthingsagenda.techtarget.com/definition/IoMT-Internet-%of-Medical-Things (2015)

  117. Deloitte Centre for Health Solutions: Medtech Internet Med. Things. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Life-Sc%iences-Health-Care/gx-lshcmedtech-iomt-brochure.pdf (2018)

  118. Rodrigues, J.J.P.C., Segundo, D.B.D.R., Junqueira, H.A., Sabino, M.H., Prince, R.M., Al-Muhtadi, J., Hugo, V., De Albuquerque, C.: Enabling technologies for the internet of health things. IEEE Access. 6, 13129–13141 (2018)

    Article  Google Scholar 

  119. Gupta, R., Tanwar, S., Al-Turjman, F., Italiya, P., Nauman, A., Kim, S.W.: Smart contract privacy protection using AI in cyber-physical systems: tools, techniques and challenges. IEEE Access. 8, 24746–24772 (2020). https://doi.org/10.1109/ACCESS.2020.2970576

    Article  Google Scholar 

  120. AMD Telemedicine: Telemedicine defined. https://www.amdtelemedicine.com/telemedicineresources/telemedicine-def%ined.html. Accessed 20 April 2020

  121. Hornyak, T.: What America can learn from China’s use of robots and telemedicine to combat the coronavirus. CNBC. https://www.cnbc.com/2020/03/18/how-china-isusing-robots-and-telemedic%ine-to-combat-the-coronavirus.html (2020)

  122. Hinkley, G., Briskin, A.: U.S. Waives Medicare and HIPAA rules to promote Telehealth. Pillsbury Law. https://www.pillsburylaw.com/en/news-and-insights/uswaives-medicare-an%d-hipaa-rules-to-promote-telehealth.html (2020)

  123. Makroo, S.: Technology and business order post COVID-19. Observer Research Foundation (ORF). https://www.orfonline.org/expert-speak/technology-and-business-orderpo%st-covid-19-64471/ (2020)

  124. Mcneil Jr., D.G.: Can smart thermometers track the spread of the Coronavirus? The New York Times. https://www.nytimes.com/2020/03/18/health/coronavirusfever-thermometer%s.html (2020)

  125. Yang, G.-Z., Nelson, B.J., Murphy, R.R., Choset, H., Christensen, H., Collins, S.H., Dario, P., Goldberg, K., Ikuta, K., Jacobstein, N.: Combating COVID-19-The role of robotics in managing public health and infectious diseases. Sci. Robot. 5(40), eabb5589 (2020). https://doi.org/10.1126/scirobotics.abb5589

    Article  Google Scholar 

  126. Watson, J., Builta, J.: IoT set to play a growing role in the COVID-19 response-Omdia. OMDIA. https://technology.informa.com/622426/iot-set-to-play-a-growingrole-in%-the-covid-19-response (2020)

  127. D’mello, A.: First IoT buttons shipped for rapid response to cleaning alerts. IoT Now-How to Run an IoT Enabled Business. https://www.iot-now.com/2020/03/24/101940- rstiot-buttons-shipped-rap%id-response-cleaning-alerts/ (2020)

  128. Burns, C.: Estimote wearables track workers to curb COVID-19 outbreak. SlashGear. https://www.slashgear.com/estimote-wearables-track-workers-to-curbcovi%d-19-outbreak-02615366/ (2020)

  129. Etherington, D.: Estimote launches wearables for workplace-level contact tracing for COVID-19. TechCrunch. https://techcrunch.com/2020/04/02/estimote-launcheswearables-for-workp%lace-level-contact-tracing-for-covid-19/ (2020)

  130. Deloitte: Understanding COVID-19’s impact on the telecom sector. https://www2.deloitte.com/global/en/pages/about-deloitte/articles/covid% 19/understanding-covid-19-impact-on-the-telecom-sector.html (2020)

  131. GlobalData: Telecom sector will shine in post Covid-19 era, says GlobalData. https://www.globaldata.com/telecom-sector-will-shine-in-post-covid-19-e%ra-says-globaldata/ (2020)

  132. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on IoT security. In: Application Areas, Security Threats, and Solution Architectures, vol. 7, pp. 82721–82743. IEEE Access (2019)

    Google Scholar 

  133. Rouse, M.: What is IoMT (Internet of Medical Things) or Healthcare IoT. https://internetofthingsagenda.techtarget.com/definition/IoMT-Internet-%of-Medical-Things (2015)

  134. Lawrence, C.: Is cloud computing the superhero of Covid-19? https://www.codemotion.com/magazine/dev-hub/cloud-manager/cloud-computing-covid-19/ (2020)

  135. MarketsandMarkets: COVID-19 impact on cloud computing market. https://www.prnewswire.com/news-releases/covid-19-impact-on-cloud-computing-market%2D%2Dexclusive-report-by-marketsandmarkets-301047436.html (2020)

  136. MarketsandMarkets: COVID-19 impact on cloud computing market service model. https://www.marketsandmarkets.com/Market-Reports/covid-19-impact-on-cloud-computing-market-86614844.html (2020)

  137. Li, C., Debruyne, D.N., Spencer, J., Kapoor, V., Liu, L.Y., Zhou, B., Lee, L., Feigelman, R., Burdon, G., Liu, J.: High sensitivity detection of coronavirus SARS-CoV-2 using multiplex PCR and a multiplex-PCR-based metagenomic method. bioRxiv (2020)

    Google Scholar 

  138. Eden, J.-S., Rockett, R., Carter, I., Rahman, H., de Ligt, J., Hadfield, J., Storey, M., Ren, X., Tulloch, R., Basile, K.: An emergent clade of SARS-CoV-2 linked to returned travellers from Iran. bioRxiv (2020)

    Google Scholar 

  139. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.: CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access. 8, 91916–91923 (2020). https://doi.org/10.1109/ACCESS.2020.2994762

    Article  Google Scholar 

  140. Haleem, A., Vaishya, R., Javaid, M., Khan, I.H.: Artificial intelligence (AI) applications in orthopaedics: an innovative technology to embrace. J Clin Orthop Trauma. 11, S80–S81 (2019). https://doi.org/10.1016/j.jcot.2019.06.012

    Article  Google Scholar 

  141. MarketsandMarkets: Is big data effective in response to coronavirus outbreak? https://www.analyticsinsight.net/big-data-effective-response-coronavirus-outbreak/ (2020)

  142. Pirouz, B., ShaffieeHaghshenas, S., ShaffieeHaghshenas, S., Piro, P.: Investigating a serious challenge in the sustainable development process: analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis. Sustainability. 12(6), 2427 (2020)

    Article  Google Scholar 

  143. Gupta, R., Misra, A.: Contentious issues and evolving concepts in the clinical presentation and management of patients with COVID-19 infection with reference to use of therapeutic and other drugs used in co-morbid diseases (hypertension, diabetes etc.). Diabetes Metab. Syndr. Clin. Res. Rev. 14(3), 251e4 (2020)

    Google Scholar 

  144. Gupta, R., Ghosh, A., Singh, A.K., Misra, A.: Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr. 14(3), 211–212 (2020)

    Article  Google Scholar 

  145. How DAMO academy’s AI system detects coronavirus cases. https://www.alizila.com/how-damo-academys-ai-system-detects-coronavirus-cases/ (2020)

  146. Kalkreuth, R., Kaufmann, P.: COVID-19: a survey on public medical imaging data resources. arXiv preprint arXiv:2004.04569 (2020)

    Google Scholar 

  147. Jin, J., Sun, W., Al-Turjman, F., Khan, M.B., Yang, X.: Activity pattern mining for healthcare. IEEE Access. 8, 56730–56738 (2020). https://doi.org/10.1109/ACCESS.2020.2981670

    Article  Google Scholar 

  148. Seoul introduces the COVID-19 AI monitoring call system. http://english.seoul.go.kr/seoul-introduces-the-covid-19-%E3%80%8Cai-monitoring-call-system%E3%80%8D/ (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Al-Turjman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, A.A., Dawood, B.A., Al-Turjman, F. (2021). Application of AI Techniques for COVID-19 in IoT and Big Data Era: A Survey. In: Al-Turjman, F. (eds) Artificial Intelligence and Machine Learning for COVID-19. Studies in Computational Intelligence, vol 924. Springer, Cham. https://doi.org/10.1007/978-3-030-60188-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60188-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60187-4

  • Online ISBN: 978-3-030-60188-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics