Skip to main content

The Rockfall Failure Hazard Assessment: Summary and New Advances

  • Chapter
  • First Online:
Understanding and Reducing Landslide Disaster Risk (WLF 2020)

Abstract

The estimation of rockfall hazards is usually based only on hazards related to rockfall propagation. The rockfall failure hazard is not currently well defined, and only a few studies have truly addressed this topic. The basics of slope stability assessment are reviewed. Here, we propose a summary of the standard methods used to assess susceptibility to rock mass failure, mainly based on techniques from the mining industry or tunneling. Most of them are qualitative. Many susceptibility scales have been described. Due to computer power and the high-resolution topography in real 3D, topography analysis and standard kinematic tests have been adapted and improved to obtain rockfall susceptibility. Hazard assessments based on the power law are one of the best and only ways to obtain a real assessment of rockfall hazard failure; however, they present some drawbacks that must be solved. The most promising avenues of research for rockfall failure hazards are linked to rock mass strength degradation, which is currently observed using high-resolution 3D monitoring of cyclic deformations with hysteresis. These are the resulting movements caused by groundwater circulations, thermal cycles, earthquakes, rainfall, etc. In conclusion, the rockfall hazard will be improved by better understanding these processes in addition to the chemical weathering effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abellán A, Oppikofer T, Jaboyedoff M, Rosser NJ, Lim M, Lato M (2014) State of science: terrestrial laser scanner on rock slopes instabilities. Earth Surf Process Land 39(1):80–97. https://doi.org/10.1002/esp.3493

    Article  Google Scholar 

  • Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40(4):455–471

    Article  Google Scholar 

  • Aksoy H, Ercanoglu M (2006) Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation. Nat Hazards Earth Syst Sci 6(6):941–954

    Article  Google Scholar 

  • Amitrano D, Grasso JR, Senfaute G (2005) Seismic precursory patterns before a cliff collapse and critical point phenomena. Geophys Res Lett 32(8)

    Google Scholar 

  • Baillifard F, Jaboyedoff M, Sartori M (2003) Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach. Nat Hazards Earth Syst Sci 3:435–442. https://doi.org/10.5194/nhess-3-435-2003

    Article  Google Scholar 

  • Bakun-Mazor D, Hatzor YH, Glaser SD, Carlos Santamarina J (2013) Thermally vs. seismically induced block displacements in Masada rock slopes. Int J Rock Mech and Min Sci 61:196–211

    Article  Google Scholar 

  • Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–236

    Article  Google Scholar 

  • Bieniawski ZT (1973) Engineering classification of jointed rock masses. Trans S Afr Inst Civ Eng 15:335–344

    Google Scholar 

  • Bieniawski ZT (1993) Classification of rock masses for engineering: the RMR system and future trends. Compr Rock Eng 3:553–573

    Google Scholar 

  • Brideau M-A, Stead D, Roots C, Orwin J (2007) Geomorphology and engineering geology of a landslide in ultramafic rocks, Dawson City, Yukon. Eng Geol 89:171–194

    Article  Google Scholar 

  • Budetta P (2004) Assessment of rockfall risk along roads. Nat Hazards Earth Syst Sci 4:71–81

    Article  Google Scholar 

  • Budetta P, Nappi M (2013) Comparison between qualitative rockfall risk rating systems for a road affected by high traffic intensity. Nat Hazards Earth Syst Sci 13(6):1643–1653

    Article  Google Scholar 

  • Budetta P, Santo A, Vivenzio F (2008) Landslide hazard mapping along the coastline of the Cilento region (Italy) by means of a GIS-based parameter rating approach. Geomorphology 94(3):340–352

    Article  Google Scholar 

  • Bull WB, Brandon MT (1998) Lichen dating of earthquake-generated regional rockfall events, Southern Alps, New Zealand. Geol Soc Am Bull 110:60–84

    Article  Google Scholar 

  • Cancelli A, Crosta G (1993) Hazard and risk assessment in rockfall prone areas. In: Skip BO (ed) Risk reliability in ground engineering. Thomas Telford, London, pp 177–190

    Google Scholar 

  • Carter BJ, Lajtai EZ (1992) Rock slope stability and distributed joint systems. Can Geotech J 29(1):53–60

    Article  Google Scholar 

  • Chau KT, Wong RHC, Liu J, Lee CF (2003) Rockfall hazard analysis for hong kong based on rockfall inventory. Rock Mech Rock Eng 36(5):383–408

    Article  Google Scholar 

  • Chen X, He P, Qin Z (2019) Strength weakening and energy mechanism of rocks subjected to Wet-Dry Cycles. Geotech Geol Eng 37(5):3915–3923

    Article  Google Scholar 

  • Chigira M, Oyama T (2000) Mechanism and effect of chemical weathering of sedimentary rocks. Eng Geol 55(1):3–14

    Article  Google Scholar 

  • Coe JA, Harp EL (2007) Influence of tectonic folding on rockfall susceptibility, American Fork Canyon, Utah, USA. Nat Hazards Earth Syst Sci 7(1):1–14

    Article  Google Scholar 

  • Collins BD, Stock GM (2016) Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat Geosci 9(5):395–400

    Article  Google Scholar 

  • Copons R, Vilaplana JM (2008) Rockfall susceptibility zoning at a large scale: from geomorphological inventory to preliminary land use planning. Eng Geol 102:142–151

    Article  Google Scholar 

  • Corò D, Galgaro A, Fontana A, Carton A (2015) A regional rockfall database: the Eastern Alps test site. Environ Earth Sci 74(2):1731–1742

    Article  Google Scholar 

  • Corona C, Trappmann D, Stoffel M (2013) Parameterization of rockfall source areas and magnitudes with ecological recorders: when disturbances in trees serve the calibration and validation of simulation runs. Geomorphology 202:33–42

    Article  Google Scholar 

  • Crosta GB, Agliardi F, Frattini P, Lari S (2015) Key issues in rock fall modeling, hazard and risk assessment for rockfall protection. Engineering Geology for Society and Territory—vol 2. Springer International Publishing, Cham, pp 43–58

    Google Scholar 

  • D’Amato J, Hantz D, Guerin A, Jaboyedoff M, Baillet L, Mariscal A (2016) Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Nat Hazards Earth Syst Sci 16(3):719–735

    Article  Google Scholar 

  • De Biagi V, Napoli ML, Barbero M, Peila D (2017) Estimation of the return period of rockfall blocks according to their size. Nat Hazards Earth Syst Sci 17(1):103–113

    Article  Google Scholar 

  • Deere DU (1963) Technical description of rock cores for engineering purposes, Felsmechanik und In Qenieurgeologie (Rock Mechanics and Engineering Geology), 1:1, 16–22. 64

    Google Scholar 

  • Dershowitz WS, Einstein HH (1988) Characterizing rock joint geometry with joint system models. Rock Mech Rock Eng 21:21–51

    Article  Google Scholar 

  • Domènech G, Corominas J, Mavrouli O, Merchel S, Abellán A, Pavetich S, Rugel G (2018) Calculation of the rockwall recession rate of a limestone cliff, affected by rockfalls, using cosmogenic chlorine-36. Case study of the Montsec Range (Eastern Pyrenees, Spain). Geomorphology 306:325–335

    Article  Google Scholar 

  • Duperret A, Taibi S, Mortimore RN, Daigneault M (2005) Effect of groundwater and sea weathering cycles on the strength of chalk rock from unstable coastal cliffs of NW France. Eng Geol 78(3):321–343

    Article  Google Scholar 

  • Dussauge C, Grasso JR, Helmstetter A (2003) Statistical analysis of rockfall volume distributions: implications for rockfall dynamics. J Geophys Res: Solid Earth, 108(B6)

    Google Scholar 

  • Dussauge-Peisser C, Helmstetter A, Grasso J-R, Hantz D, Desvarreux P, Jeannin M, Giraud A (2002) Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2:15–26. https://doi.org/10.5194/nhess-2-15-2002

    Article  Google Scholar 

  • Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int J Rock Mech Min Sci 41(1):69–87

    Article  Google Scholar 

  • Fanos AM, Pradhan B, Mansor S, Yusoff ZM, Abdullah AFb (2018) A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides 15(9):1833–1850

    Article  Google Scholar 

  • Farvacque M, Lopez-Saez J, Corona C, Toe D, Bourrier F, Eckert N (2019) How is rockfall risk impacted by land-use and land-cover changes? Insights from the French Alps. Global Planet Change 174:138–152

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3):85–98

    Article  Google Scholar 

  • Fernandez-Hernández M, Paredes C, Castedo R, Llorente M, de la Vega-Panizo R (2012) Rockfall detachment susceptibility map in El Hierro Island, Canary Islands. Spain Nat Hazards 64(2):1247–1271

    Article  Google Scholar 

  • Ferrari F, Giacomini A, Thoeni K (2016) Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices. Rock Mech Rock Eng 49(7):2865–2922

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94(3):419–437

    Article  Google Scholar 

  • Frayssines M, Hantz D (2006) Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Ranges (French Alps). Eng Geol 86(4):256–270

    Article  Google Scholar 

  • Fukuzono T (1990) Recent studies on time prediction of slope failure. Landslide News 4:9–12

    Google Scholar 

  • Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48(2):187–198

    Article  Google Scholar 

  • Gigli G, Morelli S, Fornera S, Casagli N (2014) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides 11(1):1–14

    Article  Google Scholar 

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011a) Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope. J Geophys Res: Earth Surf 116(F4)

    Google Scholar 

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011b) Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J Geophys Res: Earth Surf 116(F4)

    Google Scholar 

  • Gokceoglu C, Sonmez H, Ercanoglu M (2000) Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Eng Geol 55:277–296

    Article  Google Scholar 

  • González de Vallejo L, Ferrer M (2011) Geological Engineering. CRC Press/ Balkema, p 678

    Google Scholar 

  • Grenon M, Hadjigeorgiou J (2008) A design methodology for rock slopes susceptible to wedge failure using fracture system modelling. Eng Geol 96(1–2):78–93

    Article  Google Scholar 

  • Grenon M, Matasci B, Jaboyedoff M, Stock GM (2014) Discrete fracture network modelling using Coltop3D for rockfall potential assessment at Glacier Point, Yosemite Valley. Proceedings of t DFNE 2014, the 1st international conference on discrete fracture network engineering, Vancouver

    Google Scholar 

  • Gruner U (2008) Climatic and meteorological influences on rockfall and rockslides (“Bergsturz”). In: Protection of populated territories from floods, debris flow, mass movements and avalanches, 26–30 May 2008, 147–158

    Google Scholar 

  • Günther A (2003) SLOPEMAP: programs for automated mapping of geometrical and kinematical properties of hard rock hill slopes. Comput Geosci 29(7):865–875

    Article  Google Scholar 

  • Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazards Earth Syst Sci 4:95–102. https://doi.org/10.5194/nhess-4-95-2004

    Article  Google Scholar 

  • Guérin A, Hantz D, Rossetti J-P, Jaboyedoff M (2014) Brief communication “Estimating rockfall frequency in a mountain limestone cliff using terrestrial laser scanner”. Nat Hazards Earth Syst Sci Discuss 2:123–135. https://doi.org/10.5194/nhessd-2-123-2014

    Article  Google Scholar 

  • Guérin A, Jaboyedoff M, Collins BD, Derron M-H, Stock GM, Matasci B, Boesiger M, Lefeuvre C, Podladchikov YY (2019) Detection of rock bridges by infrared thermal imaging and modeling. Sci Rep 9(1):13138

    Article  Google Scholar 

  • Guerin A, Stock GM, Radue MJ, Jaboyedoff M, Collins BD, Matasci B, Avdievitch N, Derron M-H (2020a) Quantifying 40 years of rockfall activity in Yosemite Valley with historical Structure-from-Motion photogrammetry and terrestrial laser scanning. Geomorphology 356:107069

    Article  Google Scholar 

  • Guerin A, Jaboyedoff M, Collins BD, Stock GM, Derron M-H, Abellán A, Matasci B (2020b) Remote thermal detection of exfoliation sheet deformation. Landslides. https://doi.org/10.1007/s10346-020-01524-1

  • Gunzburger Y, Merrien-Soukatchoff V, Guglielmi Y (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Min Sci 42(3):331–349

    Article  Google Scholar 

  • Hantz D (2011) Quantitative assessment of diffuse rock fall hazard along a cliff foot. Nat Hazards Earth Syst Sci 11(5):1303–1309

    Article  Google Scholar 

  • Hantz D, Vengeon JM, Dussauge-Peisser C (2003a) An historical, geomechanical and probabilistic approach to rock-fall hazard assessment. Nat Hazards Earth Syst Sci 3:693–701. https://doi.org/10.5194/nhess-3-693-2003

    Article  Google Scholar 

  • Hantz D, Dussauge-Peisser C, Jeannin M, Vengeon JM (2003b) Rock fall hazard assessment: from qualitative to quantitative failure probability. In: Int conf on Fast Slope Movements, Naples, 263–267

    Google Scholar 

  • Hantz D, Ventroux Q, Rossetti J-P, Berger F (2016) A new approach of diffuse rockfall hazard. Landslides and Engineered Slopes. CRC Press, Experience, Theory and Practice, Napoli, Italy, pp 1531–1535

    Google Scholar 

  • Harp EL, Noble MA (1993) An engineering rock classification to evaluate seismic rock-fall susceptibility and its application to the Wasatch Front. Bull Ass Eng Geol 30(3):293–319

    Google Scholar 

  • Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res 115(F3)

    Google Scholar 

  • Hoek E (1994) Strength of rock and rock masses. ISRM News J 2(2):4–16

    Google Scholar 

  • Hoek E, Bray JW (1981) Rock slope engineering. The Institution of Mining and Metallurgy, London, p 358

    Book  Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimates or rock mass strength. Int J Rock Mech Min Sci Geomech Abstr 34(8):1165–1186

    Google Scholar 

  • Hudson JA (1992) Rock engineering systems: theory and practice. Ellis Horwood, London, p 185

    Google Scholar 

  • Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls along the main transportation corridors of southwestern British Columbia. Can Geotech J 36:224–238

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  • Intrieri E, Gigli G, Lombardi L, Raspini F, Salvatici T, Bertolini G (2016) Integration of ground-based interferometry and terrestrial laser scanning for rockslide and rockfall monitoring. Rend Online Soc Geol Ital 41:243–246

    Google Scholar 

  • Jaboyedoff M, Labiouse V (2003) Preliminary assessment of rockfall hazard based on GIS data. 10th international congress on rock mechanics ISRM 2003—technology roadmap for rock mechanics. Johannesburgh, South Africa, pp 575–578

    Google Scholar 

  • Jaboyedoff M, Derron MH (2020) Landslide analysis using laser scanner. In: Tarolli P (ed) Remote Sensing of Geomorphology. Elsevier

    Google Scholar 

  • Jaboyedoff M, Baillifard F, Hantz D, Heidenreich B, Mazzoccola D (2001) Terminologie. In: Carere K,´ Ratto S, Zanolini FE (eds) Prevention des mouvements´ de versants et des instabilites de falaises, pp 48–57

    Google Scholar 

  • Jaboyedoff M, Derron MH, Locat J, Michoud C (2021) Traité Mouvements Gravitaires. PPUR

    Google Scholar 

  • Jaboyedoff M, Metzger R, Oppikofer T, Couture R, Derron MH., Locat J. Turmel D (2007) New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software. In Eberhardt E, Stead D, Morrison T (eds) Rock mechanics: Meeting Society’s Challenges and demands, vol 1, Taylor & Francis. pp 61–68

    Google Scholar 

  • Jaboyedoff M, Baillifard F, Philippossian F, Rouiller J-D (2004a) Assessing fracture occurrence using “weighted fracturing density”: a step towards estimating rock instability hazard. Nat Hazards Earth Syst Sci 4:83–93. https://doi.org/10.5194/nhess-4-83-2004

    Article  Google Scholar 

  • Jaboyedoff M, Baillifard F, Bardou E, Girod F (2004b) Weathering, cycles of saturation-unsaturation, and strain effects as principal processes for rock mass destabilization. Q J Eng Geol Hydrogeol 37:95–103

    Article  Google Scholar 

  • Jaboyedoff M, Ornstein P, Rouiller JD (2004c) Design of a geodetic database and associated tools for monitoring rock-slope movements: the example of the top of Randa rockfall scar. Nat Hazards Earth Syst Sci 4(2):187–196

    Article  Google Scholar 

  • Jaboyedoff M, Baillifard F, Derron MH, Couture R, Locat J, Locat P (2005) Switzerland modular and evolving rock slope hazard assessment methods. In: Senneset K, Flaate KA, Larsen J (eds) Landslide and avalanches. ICFL

    Google Scholar 

  • Jaboyedoff M, Couture R, Locat P (2009) Structural analysis of Turtle Mountain (Alberta) using digital elevation model: Toward a progressive failure. Geomorphology 103(1):5–16

    Article  Google Scholar 

  • Jennings JE (1972) An approach to the stability of rock slopes based on the theory of limiting equilibrium with a material exhibiting anisotropic shear strength, stability of rock slopes, proceedings of the 13th us symposium on rock mechanics (ed. ej cording), urbana, Illinois, New York

    Google Scholar 

  • Keefer DK (1993) The susceptibility of rock slopes to earthquake-induced failure. Bull Assoc Eng Geol 30(3):353–361

    Google Scholar 

  • Kenner R, Philips M, Danioth C, Denier C, Thee P, Zgraggen A (2011) Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: gemsstock, Swiss Alps. Cold Reg Sci Technol 67:157–164

    Article  Google Scholar 

  • Kromer R, Walton G, Gray B, Lato M, Group R (2019) Development and optimization of an automated fixed-location time lapse photogrammetric rock slope monitoring system. Remote Sens 11(16):18

    Google Scholar 

  • Kromer RA, Abellán A, Hutchinson DJ, Lato M, Chanut M-A, Dubois L, Jaboyedoff M (2017) Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide. Earth Surf Dyn 5(2):293–310

    Article  Google Scholar 

  • Le Roy G, Helmstetter A, Amitrano D, Guyoton F, Le Roux-Mallouf R (2019) Seismic analysis of the detachment and impact phases of a rockfall and application for estimating rockfall volume and free-fall height. J Geophys Res: Earth Surf 124(11):2602–2622

    Article  Google Scholar 

  • Lebourg T, Mickael H, Hervé J, Samyr EBB, Thomas B, Swann Z, Emmanuel T, Maurin V (2011) Temporal evolution of weathered cataclastic material in gravitational faults of the La Clapiere deep-seated landslide by mechanical approach. Landslides 8(2):241–252

    Article  Google Scholar 

  • Leroueil S, Locat J (1998) Slope movements—geotechnical characterization, risk assessment and mitigation. In: Maric B, Lisac L, Szavits-Nossan A (eds) Geotechnical Hazards. Balkema, Rotterdam, pp 95–106

    Google Scholar 

  • Lévy C, Baillet L, Jongmans D, Mourot P, Hantz D (2010) Dynamic response of the Chamousset rock column (Western Alps, France). J Geophys Res 115(F4)

    Google Scholar 

  • Locat J, Leroueil S, Picarelli L (2000) Some considerations on the role of geological history on slope stability and estimation of minimum apparent cohesion of a rock mass. In: Bromhead N. Dixon, Ibsen ML (eds) Landslides in research, theory and practice—proceedings of the 8th international symposium on landslides, Cardiff, 26–30 June 2000: 935–942

    Google Scholar 

  • Lopez-Saez J, Corona C, Eckert N, Stoffel M, Bourrier F, Berger F (2016) Impacts of land-use and land-cover changes on rockfall propagation: Insights from the Grenoble conurbation. Sci Total Environ 547:345–355

    Article  Google Scholar 

  • Losasso L, Jaboyedoff M, Sdao F (2017) Potential rock fall source areas identification and rock fall propagation in the province of Potenza territory using an empirically distributed approach. Landslides, 1–10

    Google Scholar 

  • Losasso L, Sdao F (2018) The artificial neural network for the rockfall susceptibility assessment. A case study in Basilicata (Southern Italy). Geomat Nat Hazards Risk 9(1):737–759

    Google Scholar 

  • Loye A, Jaboyedoff M, Pedrazzini A (2009) Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat Hazards Earth Syst Sci 9(5):1643–1653

    Article  Google Scholar 

  • Mah J, Samson C, McKinnon SD, Thibodeau D (2013) 3D laser imaging for surface roughness analysis. Int J Rock Mech Min Sci 58:111–117

    Article  Google Scholar 

  • Matasci B, Jaboyedoff M, Loye A, Pedrazzini A, Derron MH, Pedrozzi G (2015a) Impacts of fracturing patterns on the rockfall susceptibility and erosion rate of stratified limestone. Geomorphology 241:83–97

    Article  Google Scholar 

  • Matasci B, Jaboyedoff M, Ravanel L, Deline P (2015b) Stability assessment, potential collapses and future evolution of the west face of the drus (3,754 m a.s.l., Mont Blanc Massif). 791–795

    Google Scholar 

  • Matasci B, Stock GM, Jaboyedoff M, Carrea D, Collins BD, Guérin A, Matasci G, Ravanel L (2018) Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms. Landslides 15(5):859–878

    Article  Google Scholar 

  • Matsukura Y, Hirose T (2000) Five year measurements of rock tablet weathering on a forested hillslope in a humid temperate region. Eng Geol 55(1–2):69–76

    Article  Google Scholar 

  • Matsuoka N (2008) Frost weathering and rockwall erosion in the southeastern Swiss Alps: long-term (1994–2006) observations. Geomorphology 99(1–4):353–368

    Article  Google Scholar 

  • Matsuoka N, Sakai H (1999) Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28:309–328

    Article  Google Scholar 

  • Mavrouli O, Corominas J, Jaboyedoff M (2015) Size distribution for potentially unstable rock masses and in situ rock blocks using LIDAR-generated digital elevation models. Rock Mech Rock Eng 48(4):1589–1604

    Article  Google Scholar 

  • Mazzoccola DF, Hudson JA (1996) A comprehensive method of rock mass characterisation for indicating natural slope instability. Q J Eng Geol Hydroge 29:37–56

    Article  Google Scholar 

  • Menendez Duarte R, Marquinez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology 43:117–136

    Article  Google Scholar 

  • Michoud C, Derron MH, Horton P, Jaboyedoff M, Baillifard FJ, Loye A, Nicolet P, Pedrazzini A, Queyrel A (2012) Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps. Nat Hazards Earth Syst Sci 12(3):615–629

    Article  Google Scholar 

  • Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15(2):139–160

    Article  Google Scholar 

  • Noël F, Cloutier C, Turmel D, Locat J (2016) Using point clouds as topography input for 3D rockfall modeling. Landslides and Engineered Slopes. CRC Press, Experience, Theory and Practice, Napoli, Italy, pp 1531–1535

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Keusen H-R (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1(8):531–535

    Article  Google Scholar 

  • Pappalardo G, Mineo S, Zampelli SP, Cubito A, Calcaterra D (2016) InfraRed thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. Int J Rock Mech Min Sci 83:182–196

    Article  Google Scholar 

  • Parise M (2002) Landslide hazard zonation of slopes susceptible to rock falls and topples. Nat Hazards Earth Syst Sci 2(1/2):37–49

    Article  Google Scholar 

  • Park H, West TR (2001) Development of a probabilistic approach for rock wedge failure. Eng Geol 59(3–4):233–251

    Article  Google Scholar 

  • Pauly J-C, Payany M (2002) Méthodologies mises en oeuvre pour la cartographie de l’aléa lié aux instabilités rocheuses sur basin géographique. Le cas des gorges du Tarn et de la Jonte (Lozère). Bull Lab Ponts et Chaussées 236:37–57

    Google Scholar 

  • Pierson LA, Davis SA, Van Vickle R (1990) Rockfall hazard rating system implementation manual. U.S. Department of Transportation, Federal Highway Administration Report, FHWA-OREG-90-01

    Google Scholar 

  • Ravanel L, Allignol F, Deline P, Gruber S, Ravello M (2010) Rock falls in the mont blanc massif in 2007 and 2008. Landslides 7(4):493–501

    Article  Google Scholar 

  • Ravanel L, Magnin F, Deline P (2017) Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Sci Total Environ 609:132–143

    Article  Google Scholar 

  • Riquelme A, Tomás R, Abellán A (2016) Characterization of Rock Slopes through Slope Mass Rating using 3D point clouds. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2015.12.008

    Article  Google Scholar 

  • Romana M (1988) Practice of SMR classification for slope appraisal, In: 5th International Symposium on Landslides, Balkema, Rotterdamm, Lausanne, Switzerland

    Google Scholar 

  • Romana M (1993) A geomechanical classification for slopes: slope mass rating. Comprehensive Rock Engineering, Pergamon, Oxford

    Google Scholar 

  • Rose ND, Hungr O (2007) Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. Int J Rock Mech Min Sci 44(2):308–320

    Article  Google Scholar 

  • Rouiller J-D, Jaboyedoff M, Marro C, Phlippossian F, Mamin M (1998) Pentes instables dans le Pennique valaisan. Rapport final PNR31. VDF, Zürich, p 239

    Google Scholar 

  • Rouyet L, Kristensen L, Derron M-H, Michoud C, Blikra LH, Jaboyedoff M, Lauknes TR (2017) Evidence of rock slope breathing using ground-based InSAR. Geomorphology 289:152–169

    Article  Google Scholar 

  • Royán MJ, Abellán A, Jaboyedoff M, Vilaplana JM, Calvet J (2014) Spatio-temporal analysis of rockfall pre-failure deformation using terrestrial LiDAR. Landslides 11(4):697–709

    Article  Google Scholar 

  • Ruiz-Carulla R, Corominas J, Mavrouli O (2016) A fractal fragmentation model for rockfalls. Landslides 14(3):875–889

    Article  Google Scholar 

  • Santana D, Corominas J, Mavrouli O, Garcia-Sellés D (2012) Magnitude–frequency relation for rockfall scars using a Terrestrial Laser Scanner. Eng Geol 145–146:50–64

    Article  Google Scholar 

  • Santi PM, Russell CP, Higgins JD, Spriet JI (2009) Modification and statistical analysis of the colorado rockfall hazard rating system. Eng Geol 104(1–2):55–65

    Article  Google Scholar 

  • Saroglou C (2019) GIS-Based Rockfall Susceptibility Zoning in Greece. Geosciences 9(4):163

    Article  Google Scholar 

  • Scavia C, Barla G, Bernaudo V (1990) Probabilistic stability analysis of block toppling failure in rock slopes. Int J Rock Mech Min Sci 27(6):465–478

    Article  Google Scholar 

  • Selby MJ (1980) A rock mass strength classification for geomorphic purposes: with tests from Antartica and New Zealand, Z. Geomorphologie 24:31–51

    Article  Google Scholar 

  • Selby MJ (1982) Controls on the stability and inclinations of hillslopes formed on hard rock, Earth Surf. Proc Land 7:449–467

    Article  Google Scholar 

  • Slob S, Hack HRGK, Turner AK (2002) An approach to automate discontinuity measurements of rock faces using laser scanning techniques. In: Proceedings of ISRM international symposium on rock engineering for mountainous regions—EUROCK 2002, Funchal, pp 87–94

    Google Scholar 

  • Stoffel M, Bollschweiler M, Vázquez-Selem L, Franco-Ramos O, Palacios D (2011) Dendrogeomorphic dating of rockfalls on low-latitude, high-elevation slopes: Rodadero, Iztaccíhuatl volcano, Mexico. Earth Surf Process Land 36(9):1209–1217

    Article  Google Scholar 

  • Strahler AN (1954) Quantitative geomorphology of erosional landscapes, In: Compt Rend 19th Intern Geol Cong 13:341–354

    Google Scholar 

  • Sturzenegger M, Stead D (2009) Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat Hazards Earth Syst Sci 9:267–287. https://doi.org/10.5194/nhess-9-267-2009

    Article  Google Scholar 

  • Taylor DW (1948) Fundamentals of soil mechanics, John Wiley & Sons, p 700

    Google Scholar 

  • Tonon F, Kottenstette JT (2006) Laser and photogrammetric methods for rock face characterization. American Rock Mechanics Association, Alexandria

    Google Scholar 

  • van Veen M, Hutchinson DJ, Bonneau DA, Sala Z, Ondercin M, Lato M (2018) Combining temporal 3-D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors. Nat Hazards Earth Syst Sci 18(8):2295–2308

    Article  Google Scholar 

  • van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(2):167–184

    Article  Google Scholar 

  • Voight B (1989) A relation to describe rate-dependent material failure. Science 243(4888):200–203

    Article  Google Scholar 

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection – a review. Nat Hazards Earth Syst Sci 11(9):2617–2651

    Article  Google Scholar 

  • Wagner A, Leite E, Olivier R (1988) Rock and debris-slides risk mapping in Nepal—a user-friendly PC system for risk mapping, In: Bonnard C (ed) 5th International symposium on landslides, vol 2, pp 1251–1258, A. A. Balkema, Rotterdam, Lausanne, Switzerland

    Google Scholar 

  • Wei L-W, Chen H, Lee C-F, Huang W-K, Lin M-L, Chi C-C, Lin H-H (2014) The mechanism of rockfall disaster: A case study from Badouzih, Keelung, in northern Taiwan. Eng Geol 183:116–126

    Article  Google Scholar 

  • Wieczorek GF, Nishenko SP, Varnes DJ (1995) Analysis of rock falls in the Yosemite Valley, California, Proc. U.S. Symp Rock Mech, 35th, 85–89

    Google Scholar 

  • Williams JG, Rosser NJ, Hardy RJ, Brain MJ, Afana AA (2018) Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency. Earth Surf Dyn 6(1):101–119

    Article  Google Scholar 

  • Williams JG, Rosser NJ, Hardy RJ, Brain MJ (2019) The Importance of Monitoring Interval for Rockfall Magnitude-Frequency Estimation. J Geophys Res: Earth Surf 124(12):2841–2853

    Article  Google Scholar 

  • Wilson RC, Keefer DK (1985) Predicting areal limits of earthquake induced landsliding, evaluating earthquake hazards in the Los Angeles Region. In U.S. Geological Survey Professional Paper, 317–345

    Google Scholar 

  • Wyllie DC (2018) Rock slope engineering: civil applications, 5th Edn. CRC Press, p 568

    Google Scholar 

  • Yamagishi H (2000) Recent landslides in western Hokkaido. Japan Pure Appl Geophys 157(6–8):1115–1134

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Swiss National Science Foundation (SNSF, grants #: 200021_127132, 200020_146426, and 200020_159221) for supporting this research. We are thankful to the American Journal Experts for their support, which improved the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Jaboyedoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaboyedoff, M., Ben Hammouda, M., Derron, MH., Guérin, A., Hantz, D., Noel, F. (2021). The Rockfall Failure Hazard Assessment: Summary and New Advances. In: Sassa, K., Mikoš, M., Sassa, S., Bobrowsky, P.T., Takara, K., Dang, K. (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-60196-6_3

Download citation

Publish with us

Policies and ethics