Skip to main content

Nature Driven Magnetic Nanoarchitectures

  • Chapter
  • First Online:
New Trends in Nanoparticle Magnetism

Abstract

Magnetotactic bacteria are aquatic microorganisms that have the ability to align in the geomagnetic field lines, using a chain of magnetic nanoparticles biomineralized internally (called magnetosomes) as a compass needle. Here we describe the biogenesis of magnetosomes, focusing in the formation of the mineral core. We then discuss the magnetic properties of the magnetosomes and the chain of magnetosomes, a natural paradigm of a magnetic 1D nanostructure. Finally, we review the use of magnetosomes and magnetotactic bacteria in biomedical and biotechnological applications, with special mention to the application in magnetic hyperthermia treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Bazylinski, R.B. Frankel, Nat. Rev. Microbiol. 2(3), 217 (2004). https://doi.org/10.1038/nrmicro842

  2. D. Faivre, D. Schüler, Chem. Rev. 108(11), 4875 (2008). https://doi.org/10.1021/cr078258w

  3. D.A. Bazylinski, C.T. Lefèvre, D. Schüler, in The Prokaryotes, ed. by E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt, F. Thompson (Springer, Berlin 2013), pp. 453–494

    Google Scholar 

  4. D.A. Bazylinski, C.T. Lefèvre, B.H. Lower, in Nanomicrobiology, ed. by L.L. Barton, D.A. Bazylinski, H. Xu (Springer, New York, 2014), chap. 3, pp. 39–74. https://doi.org/10.1007/978-1-4939-1667-2

  5. A. Arakaki, H. Nakazawa, M. Nemoto, T. Mori, T. Matsunaga, J. R. Soc. Interface 5(26), 977 (2008). https://doi.org/10.1098/rsif.2008.0170

  6. E. Alphandéry, Front. Bioeng. Biotechnol. 2, (2014). https://doi.org/10.3389/fbioe.2014.00005

  7. E. Alphandéry, A. Idbaih, C. Adam, J.Y. Delattre, C. Schmitt, F. Guyot, I. Chebbi, J. Controlled Release 262. https://doi.org/10.1016/j.jconrel.2017.07.020. http://linkinghub.elsevier.com/retrieve/pii/S0168365917307290

  8. A. Araujo, F. Abreu, K. Silva, D. Bazylinski, U. Lins, Marine Drugs 13(12), 389 (2015). https://doi.org/10.3390/md13010389. http://www.mdpi.com/1660-3397/13/1/389

  9. S. Taherkhani, M. Mohammadi, J. Daoud, S. Martel, M. Tabrizian, ACS Nano 8(5), 5049 (2014). https://doi.org/10.1021/nn5011304

  10. S. Martel, Biomicrofluidics 10(2), 021301 (2016). https://doi.org/10.1063/1.4945734

  11. D. Gandia, L. Gandarias, I. Rodrigo, J. Robles-García, R. Das, E. Garaio, J. Á. García, M.-H. Phan, H. Srikanth, I. Orue, J. Alonso, A. Muela, M.L. Fdez-Gubieda, Small 15, 1902626 (2019). https://doi.org/10.1002/smll.201902626

  12. S. Bellini, Instituto di Microbiologia dellUniversita di Pavia (1963)

    Google Scholar 

  13. R. Blakemore, Science 190(4212), 377 (1975)

    Article  ADS  Google Scholar 

  14. C.T. Lefèvre, D.A. Bazylinski, Microbiol. Mol. Biol. Rev. 77(3), 497 (2013). https://doi.org/10.1128/MMBR.00021-13

  15. F.F. Guo, W. Yang, W. Jiang, S. Geng, T. Peng, J.L. Li, Environ. Microbiol. 14(7), 1722 (2012). https://doi.org/10.1111/j.1462-2920.2012.02707.x

  16. D. Muñoz, L. Marcano, R. Martín-Rodríguez, L. Simonelli, , A. Serrano, A. García-Prieto, M.L. Fdez-Gubieda, A. Muela, Sci. Rep. 10, 11430 (2020). https://doi.org/10.1038/s41598-020-68183-z

  17. F. Abreu, J.L. Martins, T.S. Silveira, C.N. Keim, H.G.P.L. de Barros, F.J.G. Filho, U. Lins, Int. J. Syst. Evol. Microbiol. 57(6), 1318 (2007). https://doi.org/10.1099/ijs.0.64857-0

  18. R. Uebe, D. Schüler, Nat. Rev. Microbiol. 14(10), 621 (2016). https://doi.org/10.1038/nrmicro.2016.99

  19. R.B. Frankel, Ann. Rev. Biophys. Bioeng. 13(1), 85 (1984). https://doi.org/10.1146/annurev.bb.13.060184.000505

  20. B. Lower, D. Bazylinski, J. Mol. Microbiol. Biotechnol. 23(1-2), 63 (2013). https://www.karger.com/DOI/10.1159/000346543

  21. D. Schüler, FEMS Microbiol. Rev. 32(4), 654 (2008). https://doi.org/10.1111/j.1574-6976.2008.00116.x

  22. A. Komeili, H. Vali, T.J. Beveridge, D.K. Newman, Proc. Natl Acad Sci USA 101(11), 3839 (2004)

    Google Scholar 

  23. A. Komeili, FEMS Microbiol. Rev. 36, 232 (2012). https://doi.org/10.1111/j.1574-6976.2011.00315.x

  24. A. Komeili, Z. Li, D.K. Newman, Science 311(5758), 242 (2006). https://doi.org/10.1126/science.1116804

  25. K. Grünberg, E.C. Müller, A. Otto, R. Reszka, D. Linder, M. Kube, R. Reinhardt, D. Schüler, Appl. Environ. Microbiol. 70(2), 1040 (2004). https://doi.org/10.1128/AEM.70.2.1040

  26. R.B. Frankel, R.P. Blakemore, J. Magn. Magn. Mater. 15, 1562 (1980)

    Article  ADS  Google Scholar 

  27. E. Katzmann, A. Scheffel, M. Gruska, J.M. Plitzko, D. Schüler, Mol. Microbiol. 77(1), 208 (2010). https://doi.org/10.1111/j.1365-2958.2010.07202.x

  28. T. Matsunaga, T. Sakaguchi, F. Tadakoro, Appl. Microbiol. Biotechnol. 35(5), 651 (1991)

    Article  Google Scholar 

  29. K.H. Schleifer, D. Schüler, S. Spring, M. Weizenegger, R. Amann, W. Ludwig, M. Köhler, Syst. Appl. Microbiol. 14(4), 379 (1991). https://doi.org/10.1016/S0723-2020(11)80313-9

  30. H.C. McCausland, A. Komeili, PLoS Genet. 16(2), e1008499 (2020). https://doi.org/10.1371/journal.pgen.1008499

  31. C. Jogler, D. Schüler, Ann. Rev. Microbiol. 63(1), 501 (2009). https://doi.org/10.1146/annurev.micro.62.081307.162908

  32. S. Barber-Zucker, R. Zarivach, ACS Chem. Biol. 12(1), 13 (2017). https://doi.org/10.1021/acschembio.6b01000

  33. E. Cornejo, P. Subramanian, Z. Li, G.J. Jensen, A. Komeili, mBio 7(1), 1 (2016). https://doi.org/10.1128/mBio.01898-15

  34. D. Murat, A. Quinlan, H. Vali, A. Komeili, Proc. Natl Acad. Sci. 107(12), 5593 (2010). https://doi.org/10.1073/pnas.0914439107

  35. J. Baumgartner, A. Dey, P.H.H. Bomans, C. Le Coadou, P. Fratzl, N.a.J.M. Sommerdijk, D. Faivre, Nat. Mater. 12(4), 310 (2013). https://doi.org/10.1038/nmat3558

  36. J. Baumgartner, D. Faivre, in Molecular Biomineralization, Progress in Molecular and Subcellular Biology, vol. 52, ed. by W.E.G. Müller (Springer, Berlin, 2011), chap. 1, pp. 3–27. https://doi.org/10.1007/978-3-642-21230-7

  37. J. Baumgartner, N. Menguy, T.P. Gonzalez, G. Morin, M. Widdrat, D. Faivre, J. R. Soc. Interface 13, 124 (2016). https://doi.org/10.1098/rsif.2016.0665

  38. M.L. Fdez-Gubieda, A. Muela, J. Alonso, A. García Prieto, L. Olivi, J.M. Barandiarán, R. Fernández-Pacheco, ACS nano 7, 3297 (2013)

    Google Scholar 

  39. E. Firlar, T. Perez-Gonzalez, A. Olszewska, D. Faivre, T. Prozorov, J. Mater. Res. pp. 1–9 (2016). https://doi.org/10.1557/jmr.2016.33

  40. A.M. Huízar-Félix, D. Muñoz, I. Orue, C. Magén, A. Ibarra, J.M. Barandiarán, A. Muela, M.L. Fdez-Gubieda, Appl. Phys. Lett. 108, 6 (2016). https://doi.org/10.1063/1.4941835

  41. E. Katzmann, F.D. Müller, C. Lang, M. Messerer, M. Winklhofer, J.M. Plitzko, D. Schüler, Mol. Microbiol. 82(6), 1316 (2011). https://doi.org/10.1111/j.1365-2958.2011.07874.x

  42. D. Faivre, T.U. Godec, Angewandte Chemie - International Edition 54(16), 4728 (2015). https://doi.org/10.1002/anie.201408900

  43. A. Dey, J.J.M. Lenders, N.A.J.M. Sommerdijk, Faraday Discuss. 179, 215 (2015). https://doi.org/10.1039/C4FD00227J

  44. J.J.M. Lenders, G. Mirabello, N.A.J.M. Sommerdijk, Chem. Sci. 7, 5624 (2016). https://doi.org/10.1039/C6SC00523C

  45. A. Elfick, G. Rischitor, R. Mouras, A. Azfer, L. Lungaro, M. Uhlarz, T. Herrmannsdörfer, J. Lucocq, W. Gamal, P. Bagnaninchi, S. Semple, D.M. Salter, Sci. Rep. 7(January), 1 (2017). https://doi.org/10.1038/srep39755

  46. I. Kolinko, A. Lohße, S. Borg, O. Raschdorf, C. Jogler, Q. Tu, M. Pósfai, E. Tompa, J.M. Plitzko, A. Brachmann, G. Wanner, R. Müller, Y. Zhang, D. Schüler, Nat. Nanotechnol. 9(3), 193 (2014). https://doi.org/10.1038/nnano.2014.13

  47. R. Prozorov, T. Prozorov, S. Mallapragada, B. Narasimhan, T. Williams, D.A. Bazylinski, Phys. Rev. B 76(5), 1 (2007). https://doi.org/10.1103/PhysRevB.76.054406

  48. L. Marcano, A. García-Prieto, D. Muñoz, L. Fernández Barquín, I. Orue, J. Alonso, A. Muela, M. Fdez-Gubieda, Biochimica et Biophysica Acta (BBA) - General Subjects 1861(6), 1507 (2017). https://doi.org/10.1016/j.bbagen.2017.01.012

  49. J. Fock, L.K. Bogart, D. González-Alonso, J.I. Espeso, M.F. Hansen, M. Varón, C. Frandsen, Q.A. Pankhurst, J. Phys. D: Appl. Phys. 50(26), 265005 (2017). https://doi.org/10.1088/1361-6463/aa73fa

  50. H. Fischer, G. Mastrogiacomo, J.F. Loffler, R.J. Warthmann, P.G. Weidler, A.U. Gehring, Earth Planetary Sci. Lett. 270(3–4), 200 (2008). https://doi.org/10.1016/j.epsl.2008.03.022

  51. H. Kronmuller, F. Walz, Philosophical Maga. Part B 42(3), 433 (1980). https://doi.org/10.1080/01418638008221886

  52. A.R. Muxworthy, E. McClelland, Geophys. J. Int. 140(1), 101 (2000). http://gji.oxfordjournals.org/content/140/1/101.short

  53. D. Gandia, L. Gandarias, L. Marcano, I. Orue, D. Gil-Cartón, J. Alonso, A. García-Arribas, A. Muela, M.L. Fdez-Gubieda, Nanoscale 30, 16081–16090 (2020). https://doi.org/10.1039/D0NR02189J

  54. P. Bender, L. Marcano, I. Orue, D. Alba Venero, D. Honecker, L. Fernández Barquín, A. Muela, M.L. Fdez-Gubieda, Nanoscale Adv. 2, 1115–1121 (2020). https://doi.org/10.1039/C9NA00434C

  55. E.P. Wohlfarth, J. Appl. Phys. 29(3), 595 (1958). https://doi.org/10.1063/1.1723232

  56. K. O’Grady, R. Chantrell, in Magnetic Properties of Fine Particles, J.L. Dormann D. Fiorani edn. (Elsevier, 1992), pp. 93–102

    Google Scholar 

  57. I. Orue, L. Marcano, P. Bender, A. García-Prieto, S. Valencia, M.A. Mawass, D. Gil-Cartón, D. Alba Venero, D. Honecker, A. García-Arribas, L. Fernández Barquín, A. Muela, M.L. Fdez-Gubieda, Nanoscale 10(16), 7407 (2018). https://doi.org/10.1039/C7NR08493E

  58. L.J. Geoghegan, W.T. Coffey, B. Mulligan, Adv. Chem. Phys. 100, 475 (1997)

    Google Scholar 

  59. J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 109, 083921 (2011)

    Article  ADS  Google Scholar 

  60. L.R. Bickford, J.M. Brownlow, R.F. Penoyer, Proc. IEE-Part B: Radio Electron. Eng. 104(5S), 238 (1957)

    Google Scholar 

  61. K. Abe, Y. Miyamotto, S. Chikazumi, J. Phys. Soc. Jpn. 41, 6 (1976)

    Google Scholar 

  62. L. Marcano, D. Muñoz, R. Martín-Rodrguez, I.n. Orue, J. Alonso, A. García-Prieto, A. Serrano, S. Valencia, R. Abrudan, L. Fernández Barquín, A. García-Arribas, A. Muela, M.L. Fdez-Gubieda, J. Phys. Chem. C 122(13), 7541 (2018). https://doi.org/10.1021/acs.jpcc.8b01187

  63. R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler, U. Heyen, I. Hilger, W.a. Kaiser, J. Magn. Magn. Mater. 293(1), 80 (2005). https://doi.org/10.1016/j.jmmm.2005.01.047

  64. A. Muela, D. Muñoz, R. Martín-Rodríguez, I. Orue, E. Garaio, A. Abad Díaz de Cerio, J. Alonso, J.Á. García, M.L. Fdez-Gubieda, J. Phys. Chem. C 120(42), 24437 (2016). https://doi.org/10.1021/acs.jpcc.6b07321

  65. T. Orlando, S. Mannucci, E. Fantechi, G. Conti, S. Tambalo, A. Busato, C. Innocenti, L. Ghin, R. Bassi, P. Arosio, F. Orsini, C. Sangregorio, M. Corti, M.F. Casula, P. Marzola, A. Lascialfari, A. Sbarbati, Contrast Media Mol. Imaging 11(2), 139 (2015). https://doi.org/10.1002/cmmi.1673

  66. E. Alphandéry, I. Chebbi, F. Guyot, M. Durand-Dubief, Int. J. Hyperthermia: Official J. Euro. Soc. Hyperthermic Oncol. North Am. Hyperthermia Group 6736, 1 (2013). https://doi.org/10.3109/02656736.2013.821527

  67. M. Timko, A. Dzarova, J. Kovac, A. Skumiel, A. Jzefczak, T. Hornowski, H. Gojewski, V. Zavisova, M. Koneracka, A. Sprincova, O. Strbak, P. Kopcansky, N. Tomasovicova, J. Magn. Magn. Mater. 321(10), 1521 (2009). https://doi.org/10.1016/j.jmmm.2009.02.077. Proceedings of the Seventh International Conference on the Scientific and Clinical Applications of Magnetic Carriers

  68. S. Dutz, R. Hergt, Int. J. Hyperthermia : Official J. Euro. Soc. Hyperthermic Oncol. North Am. Hyperthermia Group 29(8), 790 (2013). https://doi.org/10.3109/02656736.2013.822993

  69. C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estradé, F. Peiró, Z. Saghi, P.a. Midgley, I. Conde-Leborán, D. Serantes, D. Baldomir, Sci. Rep. 3, 1652 (2013). https://doi.org/10.1038/srep01652

  70. E. Alphandéry, S. Faure, O. Seksek, F. Guyot, I. Chebbi, ACS Nano 5(8), 6279 (2011). https://doi.org/10.1021/nn201290k

  71. K.D. Bakoglidis, K. Simeonidis, D. Sakellari, G. Stefanou, M. Angelakeris, IEEE Trans. Magn. 48(4), 1320 (2012). https://doi.org/10.1109/TMAG.2011.2173474

  72. C. Lang, D. Schüler, D. Faivre, Macromol. Biosci. 7(2), 144 (2007). https://doi.org/10.1002/mabi.200600235

  73. N. Ginet, R. Pardoux, G. Adryanczyk, D. Garcia, C. Brutesco, D. Pignol, PLoS ONE 6(6), e21442 (2011). https://doi.org/10.1371/journal.pone.0021442

  74. J.B. Sun, J.H. Duan, S.L. Dai, J. Ren, L. Guo, W. Jiang, Y. Li, Biotechnol. Bioeng. 101(6), 1313 (2008). https://doi.org/10.1002/bit.22011

  75. Q. Deng, Y. Liu, S. Wang, M. Xie, S. Wu, A. Chen, W. Wu, Materials 6(9), 3755 (2013). https://doi.org/10.3390/ma6093755

  76. M.L. Fernández-Gubieda, J. Alonso, A. García-Prieto, A. García-Arribas, L. Fernandez Barquín, A. Muela, J. Appl. Phys. 128, 070902 (2020). https://doi.org/10.1063/5.0018036

  77. M.R. Benoit, D. Mayer, Y. Barak, I.Y. Chen, W. Hu, Z. Cheng, S.X. Wang, D.M. Spielman, S.S. Gambhir, A. Matin, Clin. Cancer Res. 15(16), 5170 (2009). https://doi.org/10.1158/1078-0432.CCR-08-3206

  78. O. Felfoul, M. Mohammadi, S. Taherkhani, D. de Lanauze, Y. Zhong Xu, D. Loghin, S. Essa, S. Jancik, D. Houle, M. Lafleur, L. Gaboury, M. Tabrizian, N. Kaou, M. Atkin, T. Vuong, G. Batist, N. Beauchemin, D. Radzioch, S. Martel, Nat. Nanotechnol. 11(August), 941 (2016). https://doi.org/10.1038/nnano.2016.137

  79. S. Mériaux, M. Boucher, B. Marty, Y. Lalatonne, S. Prévéral, L. Motte, C.T. Lefèvre, F. Geffroy, F. Lethimonnier, M. Péan, D. Garcia, G. Adryanczyk-Perrier, D. Pignol, N. Ginet, Adv. Healthcare Mater. 4(7), 1076 (2015). https://doi.org/10.1002/adhm.201400756

  80. Z. Xiang, X. Yang, J. Xu, W. Lai, Z. Wang, Z. Hu, J. Tian, L. Geng, Q. Fang, Biomaterials 115(Supplement C), 53 (2017)

    Google Scholar 

  81. M. Boucher, F. Geffroy, S. Prvral, L. Bellanger, E. Selingue, G. Adryanczyk-Perrier, M. Pan, C. Lefèvre, D. Pignol, N. Ginet, S. Mriaux, Biomaterials 121, 167 (2017)

    Article  Google Scholar 

  82. L. Xiang, J. Wei, S. Jianbo, W. Guili, G. Feng, L. Ying, Lett. Appl. Microbiol. 45(1), 75 (2007). https://doi.org/10.1111/j.1472-765X.2007.02143.x

  83. R. ting Liu, J. Liu, J. qiong Tong, T. Tang, W.C. Kong, X. wen Wang, Y. Li, J. tian Tang, Prog. Nat. Sci.: Mater. Int. 22(1), 31 (2012)

    Google Scholar 

  84. L. Qi, X. Lv, T. Zhang, P. Jia, R. Yan, S. Li, R. Zou, Y. Xue, L. Dai, Scientific Reports 6(December 2015), 26961 (2016)

    Google Scholar 

  85. T. Revathy, M.A. Jayasri, K. Suthindhiran, 3 Biotech 7, 126 (2017)

    Google Scholar 

  86. S.S. Staniland, W. Williams, N. Telling, G. Van Der Laan, A. Harrison, B. Ward, Nat. Nanotechnol. 3(3), 158 (2008)

    Article  ADS  Google Scholar 

  87. M. Tanaka, R. Brown, N. Hondow, A. Arakaki, T. Matsunaga, S. Staniland, J. Mater. Chem. 22(24), 11919 (2012). https://doi.org/10.1039/c2jm31520c

  88. J. Li, N. Menguy, M.A. Arrio, P. Sainctavit, A. Juhin, Y. Wang, H. Chen, O. Bunau, E. Otero, P. Ohresser, Y. Pan, J. R. Soc. Interface 13(121). Article No. 20160355, (2016)

    Google Scholar 

  89. L. Marcano, I. Orue, A. García-Prieto, R. Abrudan, J. Alonso, L. Fernández Barquín, S. Valencia, A. Muela, M. Luisa Fdez-Gubieda, J Phys. Chem. C 124(41), 22827–22838 (2020). https://doi.org/10.1021/acs.jpcc.0c07018

  90. D. Pignol, M. SABATY, P. Arnoux, J. ABBE. Modified magnetotactic bacteria expressing a metallophore specific for cobalt and/or nickel (2017). https://encrypted.google.com/patents/WO2017077114A1?cl=nl. WO Patent App. PCT/EP2016/076,856

  91. W. Zhou, Y. Zhang, X. Ding, Y. Liu, F. Shen, X. Zhang, S. Deng, H. Xiao, G. Yang, H. Peng, Appl. Microbiol. Biotechnol. 95(5), 1097 (2012)

    Article  Google Scholar 

  92. Y. Amemiya, A. Arakaki, S.S. Staniland, T. Tanaka, T. Matsunaga, Biomaterials 28(35), 5381 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.051

  93. S.M. Bird, O. El-Zubir, A.E. Rawlings, G.J. Leggett, S.S. Staniland, J. Mater. Chem. C 4, 3948 (2016)

    Article  Google Scholar 

  94. X. Jiang, J. Feng, L. Huang, Y. Wu, B. Su, W. Yang, L. Mai, L. Jiang, Adv. Mater. 2016, 1 (2016). http://doi.wiley.com/10.1002/adma.201601609

  95. U. Heyen, D. Schüler, Appl. Microbiol. Biotechnol. 61(5–6), 536 (2003). https://doi.org/10.1007/s00253-002-1219-x

  96. K.T. Silva, P.E. Leão, F. Abreu, J.A. López, M.L. Gutarra, M. Farina, D.A. Bazylinski, D.M.G. Freire, U. Lins, Appl. Environ. Microbiol. 79(8), 2823 (2013). https://doi.org/10.1128/AEM.03740-12

Download references

Acknowledgements

The Spanish Government is acknowledged for funding under projects number MAT2017-83631-C3-R. The Basque Government is acknowledged for funding under project number IT-1245-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Fdez-Gubieda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fdez-Gubieda, M.L., Marcano, L., Muela, A., García-Prieto, A., Alonso, J., Orue, I. (2021). Nature Driven Magnetic Nanoarchitectures. In: Peddis, D., Laureti, S., Fiorani, D. (eds) New Trends in Nanoparticle Magnetism. Springer Series in Materials Science, vol 308. Springer, Cham. https://doi.org/10.1007/978-3-030-60473-8_7

Download citation

Publish with us

Policies and ethics