Skip to main content

Nanoelectronic Devices Enriching Moore’s Law

  • Chapter
  • First Online:
Atomic-Scale Electronics Beyond CMOS

Abstract

This chapter is focused on nanoelectronic devices developed in the last years as the result of searching for alternative developments of the Moore’s law. We deal in this chapter with ballistic devices, negative capacitance FETs, hyper FETs, tunneling devices, phase change devices, quantum dots and memories. Many of them have in common the fact that quantum mechanics is at the foundation of their functionalities, i.e., they are quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharonovich I, Englund D, Milos Toth M (2016) Solid-state single-photon emitters. Nat Photonics 1:631–641

    Article  Google Scholar 

  • Alam AA, Si M, Ye PD (2019) A critical review of recent progress on negative capacitance transistors. Appl Phys Lett 114:090401

    Article  Google Scholar 

  • Auton G, Zhang J, Kumar RK, Wang H, Zhang X, Wang Q, Hill E, Song A (2016) Graphene ballistic nano-rectifier with very high responsivity. Nat Commun 7:11670

    Article  Google Scholar 

  • Auton G, But DB, Zhang J, Hill E, Coquillat D, Consejo C, Nouvel P, Knap W, Varani L, Teppe F, Torres J, Song A (2017) Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett 17:7015

    Article  Google Scholar 

  • Bain AK, Chand P (2017) Ferroelectrics: principles and applications. Wiley-VCH

    Google Scholar 

  • Barreiro A, van der Zant HSJ, Vandersypen LMK (2012) Quantum dots at room temperature carved out from few-layer graphene. Nano Lett 12:6096–6100

    Article  Google Scholar 

  • Bertolazzi S, Krasnozhon D, Kiss A (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7:3246–3252

    Article  Google Scholar 

  • Bidenko P, Lee S, Han J-H, Song J-D, Kim S-H (2018) Simulation study of the design sub-kT/q non-hysteretic negative capacitance FET using capacitive matching. J IEEE Electron Dev Soc 6:901–923

    Google Scholar 

  • Bischoff D, Varlet A, Simonet P, Eich M, Overweg HC, Ihn T, Ensslin K (2015) Localized charge carriers in graphene nanodevices. Appl Phys Rev 2:031301

    Article  Google Scholar 

  • Böscke TS, Müller J, Bräuhaus D, Schröder U, Böttger U (2011) Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 99:102903

    Article  Google Scholar 

  • Brady GJ, Way AJ, Safron NS, Evensen HT, Gopalan P, Arnold MS (2016) Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci Adv 2:e1601240

    Article  Google Scholar 

  • Cai X, Sushkov AB, Suess RJ, Jadidi MM, Jenkins GJ, Nyakiti LO, Meyers-Ward RL, Li S, Yan J, Gaskill DK, Murphy TE, Drew HD, Fuhrer MS (2014) Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat Nanotechnol 9:814–819

    Article  Google Scholar 

  • Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H-C, Wu H, Huang Y, Duan X (2014) Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat Commun 5:5143

    Article  Google Scholar 

  • Cheng C-H, Fan C-C, Tu C-Y, Hsu H-H, Chang C-Y (2019) Implementation of dopant-free hafnium oxide negative capacitance field-effect transistor. IEEE Trans Electron Dev Lett 66:825–828

    Article  Google Scholar 

  • Chua L (2014a) If it’s pinched it’s a memristor. In: Tetzlaff R (ed) Memristors and memristive systems. Springer, pp 17–90

    Google Scholar 

  • Chua L (2014b) Memristor, Hodgkin-Huxley, and edge of chaos. In: Adamatzky A, Chua L (eds) Memristor networks. Springer, pp 67–94

    Google Scholar 

  • Cui C, Xue F, Hu W-J, Li L-J (2018) Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater Appl 18:18

    Google Scholar 

  • Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press

    Google Scholar 

  • Desai SB, Madhvapathy SR, Sachid AB, Llinas JP, Wang Q, Ahn GH, Pitner G, Kim MJ, Bokor J, Hu C, Wong HP, Javey A (2016) MoS2 transistors with 1-nanometer gate lengths. Science 354:99–102

    Article  Google Scholar 

  • Diduck Q, Irie H, Margala M (2009) A room temperature ballistic deflection transistor for high performance applications. Int J High Speed Electron Syst 19:23–31

    Article  Google Scholar 

  • Dragoman D, Dragoman M (2007a) Negative differential resistance of electrons in graphene barrier. Appl Phys Lett 90:143111

    Article  Google Scholar 

  • Dragoman D, Dragoman M (2007b) Giant thermoelectric effect in graphene. Appl Phys Lett 91:203116

    Article  Google Scholar 

  • Dragoman M, Dragoman D (2009) Nanoelectronics: principles and devices (2nd edn). Artech House

    Google Scholar 

  • Dragoman D, Dragoman M (2013) Geometrically induced rectification in two-dimensional ballistic nanodevices. J Phys D 46:055306

    Article  MathSciNet  Google Scholar 

  • Dragoman M, Dragoman D (2016) THz devices based on carbon nanomaterials. In: Tiginyanu I, Topala P, Ursaki V (eds) Nanostructures and thin films for multifunctional applications. Nanoscience and technology series. Springer, pp 533–549

    Google Scholar 

  • Dragoman M, Dragoman D (2017) 2D nanoelectronics, physics and devices of atomically thin materials. Springer, Berlin

    Book  MATH  Google Scholar 

  • Dragoman M, Dinescu A, Dragoman D (2014a) Negative differential resistance in graphene-based ballistic field-effect-transistor with oblique top gate. Nanotechnology 25:41520

    Article  Google Scholar 

  • Dragoman M, Aldrigo M, Dinescu A, Dragoman D, Costanzo A (2014b) Towards a terahertz direct receiver based on graphene up to 10 THz. J Appl Phys 115:044307

    Article  Google Scholar 

  • Dragoman M, Dinescu A, Dragoman D (2016a) Room temperature on-wafer ballistic graphene field-effect-transistor with oblique double-gate. J Appl Phys 119:244305

    Article  Google Scholar 

  • Dragoman M, Tiginyanu I, Dragoman D, Braniste T, Ciobanu V (2016b) Memristive GaN ultrathin suspended membrane array. Nanotechnology 27:295204

    Article  Google Scholar 

  • Dragoman M, Dinescu A, Dragoman D (2017) Room temperature nanostructured graphene transistor with high on/off ratio. Nanotechnology 28:015201

    Article  Google Scholar 

  • Dragoman M, Dinescu A, Dragoman D (2018a) Wafer-scale fabrication and room-temperature experiments on graphene-based gates for quantum computation. IEEE Trans Nanotechnol 17:362–366

    Article  Google Scholar 

  • Dragoman M, Dinescu A, Dragoman D (2018b) Solving the graphene electronics conundrum: high mobility and high on-off ratio in graphene nanopatterned transistors. Physica E 97:296–301

    Article  Google Scholar 

  • Dragoman M, Modreanu M, Povey IM, Dinescu A, Dragoman D, Di Donato A, Pavoni E, Farina M (2018c) Wafer-scale very large memory windows in graphene monolayer/HfZrO ferroelectric capacitors. Nanotechnology 29:425204

    Article  Google Scholar 

  • Dragoman M, Tiginyanu I, Dragoman D, Dinescu A, Braniste T, Ciobanu V (2018d) Learning mechanisms in memristor networks based on GaN nanomembranes. J Appl Phys 124:152110

    Article  Google Scholar 

  • Dragoman M, Batiri M, Dinescu A, Ciobanu V, Rusu E, Dragoman D, Tiginyanu I (2018e) A SnS2-based photomemristor driven by sun. J Appl Phys 123:024506

    Article  Google Scholar 

  • Dragoman M, Dinescu A, Dragoman D (2019) 2D materials nanoelectronics: new concepts, fabrication, characterization from microwaves up to optical spectrum. Phys Status Solidi A 216:1800724

    Article  Google Scholar 

  • Dragoman M, Aldrigo M, Connolly J, Povey IM, Iordanescu S, Dinescu A, Vasilache D, Modreanu M (2020a) MoS2 radio: detecting radio-waves with a two-dimensional (2D) transition metal dichalcogenide semiconductor. Nanotechnology 31:06LT01

    Google Scholar 

  • Dragoman M, Modreanu M, Povey IM, Dinescu A, Dragoman D (2020b) Reconfigurable horizontal-vertical carrier transport in graphene/HfZrO field-effect-transistor. Nanotechnology 31:025203

    Article  Google Scholar 

  • Ferry DF, Goodnick M (1997) Transport in nanostructures. Cambridge University Press

    Google Scholar 

  • Gehring P, Sadeghi H, Sangtarash S, Lau CS, Liu J, Ardavan A, Warner JH, Lambert CJ, Briggs GA, Mol JA (2016) Quantum interference in graphene nanoconstrictions. Nano Lett 16:4215–4216

    Article  Google Scholar 

  • Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV, Morozov SV, Kim Y-J, Gholinia A, Haig SJ, Makarovsky O, Eaves L, Ponomarenko LA, Geim AK, Novoselov KS, Mishchenko A (2012) Vertical field-effect transistor based on graphene WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100–103

    Article  Google Scholar 

  • Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, van den Brink J (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B 76:073103

    Article  Google Scholar 

  • Gonzalo JA, Jiménez B (2007) Ferroelectricity: the fundamentals collection. Wiley VCH

    Google Scholar 

  • Güttinger J, Molitor F, Stampfer C, Schnez S, Jacobsen A, Dröscher S, Ihn T, Ensslin K (2012) Transport through graphene quantum dots. Rep Prog Phys 75:126502

    Article  Google Scholar 

  • Hammam AMM, Schmidt ME, Muruganathan M, Suzuki S, Mizuta H (2018) Sub-10 nm graphene nano-ribbon tunnel field-effect transistor. Carbon 126:588–593

    Article  Google Scholar 

  • Han S-J, Valdes Garcia A, Oida S, Jenkins KA, Haensch W (2014) Graphene radio frequency receiver integrated circuit. Nat Commun 5:3086

    Article  Google Scholar 

  • Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302

    Article  Google Scholar 

  • Harrison P, Valavanis A (2016) Quantum wells, wires and dots (4th ed). Wiley

    Google Scholar 

  • Hu SG, Wu SY, Jia WW, Yu Q, Deng LJ, Fu YQ, Liu Y, Chen TP (2014) Review of nanostructured resistive switching memristor and its applications. Nanosci Nanotechnol Lett 6:729–757

    Article  Google Scholar 

  • Ilatikhameneh H, Ameen T, Novakovic B, Tan Y, Klimeck G, Rahman R (2016) Saving Moore’s law down to 1 nm channels with anisotropic effective mass. Sci Rep 6:31501

    Article  Google Scholar 

  • Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337

    Article  Google Scholar 

  • Jadwiszczak J, Keane D, Maguire P, Cullen CP, Zhou Y, Song H, Downing C, Fox D, McEvoy N, Zhu R, Xu J, Duesberg GS, Liao Z-M, Boland JJ, Zhang H (2019) MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13:14262–14273

    Article  Google Scholar 

  • Ji H, Wei J, Natelson D (2012) Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett 12:2988

    Article  Google Scholar 

  • Jie W, Hao J (2014) Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors. Nanoscale 6:6346–6362

    Article  Google Scholar 

  • Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10:1297–1301

    Article  Google Scholar 

  • Kang K, Xie S, Huang L, Han Y, Huang PY, Mak KF, Kim C-J, Muller D, Park J (2015) High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520:656–660

    Article  Google Scholar 

  • Kim M, Ge R, Wu X, Lan X, Tice J, Lee JC, Akinwande D (2018) Zero-static power radio-frequency switches based on MoS2 atomristors. Nat Commun 9:2524

    Article  Google Scholar 

  • Knap W, Teppe F, Dyakonova N, Coquillat D, Łusakowski J (2008) Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission. J Phys Condens Matter 20:384205

    Article  Google Scholar 

  • Krivokapic Z, Rana U, Galatage R, Razavieh A, Aziz A, Liu J, Shi J, Kim HJ, Sporer R, Serrao C, Busquet A, Polakowski P, Müller J, Kleemeier W, Jacob A, Brown D, Knorr A, Carter R, Banna S (2017) 14 nm ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications. IEEE Int Electron Devices Meet (IEDM):15.1.1–15.1.4

    Google Scholar 

  • Kwon D-H, Kim KM, Jang JH, Jeon JM, Lee MH, Kim GH, Li X-S, Park G-S, Lee B, Han S, Kim M, Hwang CS (2010) Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 5:148–153

    Article  Google Scholar 

  • Lee G-H, Kim S, Jhi S-H, Lee H-J (2015) Ultimately short ballistic vertical graphene Josephson junctions. Nat Commun 6:6181

    Article  Google Scholar 

  • Li T, Gallop J, Hao L, Romans E (2018) Ballistic Josephson junctions based on CVD graphene. Supercond Sci Technol 31:045004

    Article  Google Scholar 

  • Liu XL, Hug D, Vandersypen LVK (2010) Gate-defined graphene double quantum dot and excited state spectroscopy. Nano Lett 10:1623–1627

    Article  Google Scholar 

  • Liu Y, Duan X, Huang Y, Duan X (2018) Two-dimensional transistors beyond graphene and TMDCs. Chem Soc Rev 47:6388

    Article  Google Scholar 

  • Lusakowski J, Knap W, Dyakonova N, Varani L, Mateos J, Gonzalez T, Roelens Y, Bollaert S, Cappy A (2005) Voltage tuneable terahertz emission from a ballistic nanometer InGaAs∕InAlAs transistor. J Appl Phys 97:064307

    Article  Google Scholar 

  • Lv Y, Qin W, Wang C, Liao L, Liu X (2019) Recent advances in low-dimensional heterojunction-based tunnel field effect transistors. Adv Electron Matt 5:1800569

    Article  Google Scholar 

  • McGuire FA, Lin YC, Price K, Rayner GB, Khandelwal S, Salahuddin S, Franklin AD (2017) Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett 17:4801–4806

    Article  Google Scholar 

  • Michel P (ed) (2017) Quantum dots for quantum information technologies. Springer

    Google Scholar 

  • Moon JS, Curtis D, Bui S, Hu M, Gaskill DK, Tedesco JL, Asbeck P, Jernigan GG, VanMil BL, Myers-Ward RL, Eddy CR Jr, Campbell PM, Weng X (2010) Top-gated epitaxial graphene FETs on Si-face SiC wafers with a peak transconductance of 600 mS/mm. IEEE Electron Dev Lett 31:260–262

    Article  Google Scholar 

  • Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:114

    Google Scholar 

  • Mott NF (1949) The basis of the electron theory of metals, with special reference to the transition metals. Proc Phys Soc A 62:416

    Google Scholar 

  • Müller J, Böscke TS, Schröder U, Mueller S, Bräuhaus D, Böttger U, Frey L, Mikolajick T (2012) Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett 12:4318–4323

    Article  Google Scholar 

  • Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y, Tokura Y (2012) Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487:459–462

    Article  Google Scholar 

  • Noé P, Vallée C, Hippert F, Fillot F, Raty J-Y (2018) Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues. Semicond Sci Technol 33:013002

    Article  Google Scholar 

  • Nemnes G A,Dragoman D, Dragoman M (2019) Graphene bandgap induced by ferroelectric Pca21 HfO2 substrate: a first-principles study. Phys.Chem. Phys: 21,15001

    Article  Google Scholar 

  • Pan Y, Yin H, Huang K, Zhang Z, Zhang Q, Jia K, Wu Z, Luo K, Yu J, Li J, Wang W, Ye T (2019) Novel 10-nm gate length MoS2 transistor fabricated on Si fin substrate. IEEE J Electron Dev Soc 7:484–488

    Google Scholar 

  • Park MH, Lee YH, Kim HJ, Kim YJ, Moon T, Kim KD, Muller J, Kersch A, Schroeder U, Mikolajick T, Hwang CS (2015) Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater 27:1811–1831

    Article  Google Scholar 

  • Pergament A, Crunteanu A, Beaumont A, Stefanovich G (2015) Vanadium dioxide: metal-insulator transition, electrical switching and oscillations. A review of state of the art and recent progress. EMN meeting on computation and theory, energy materials and nanotechnology, November 9 to 12, Istanbul, Turkey. https://arxiv.org/abs/1601.06246

  • Pirovano A, Lacaita AL, Pellizzer F, Kostylev SA, Benvenuti A, Bez R (2004) Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans Electron Dev 51:714–719

    Article  Google Scholar 

  • Rogalski A (2019) Graphene-based materials in the infrared and terahertz detector families: a tutorial. Adv Opt Photonics 11:314–379

    Article  Google Scholar 

  • Rogalski A, Kopytko M, Martyniuk P (2019) Two-dimensional infrared and terahertz detectors: outlook and status. Appl Phys Rev 6:021316

    Article  Google Scholar 

  • S. Salahuddin , S. Datta (2008) Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8: 405-410

    Article  Google Scholar 

  • Sandner A, Preis T, Schell C, Giudici P, Watanabe K, Taniguchi T, Weiss D, Eroms J (2015) Ballistic transport in graphene antidot lattices. Nano Lett 15:8402–8406

    Article  Google Scholar 

  • Sangwan VK, Lee H-S, Bergeron H, Balla I, Beck ME, Chen K-S, Hersam MC (2018) Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554:500–504

    Article  Google Scholar 

  • Sanne A, Ghosh R, Rai A, Yogeesh MN, Shin SH, Sharma A, Jarvis K, Mathew L, Rao R, Akinwande D, Banerjee S (2015) Radio frequency transistors and circuits based on CVD MoS2. Nano Lett 15:5039

    Article  Google Scholar 

  • Schmidt FE, Jenkins MD, Watanabe K, Steele GA (2018) A ballistic graphene superconducting microwave circuit. Nat Commun 9:4

    Article  Google Scholar 

  • Schröder U, Mueller S, Mueller J, Yarchuk E, Martin D, Adelmann C, Schloesser T, van Bentum R, Mikolajick T (2013) Hafnium oxide based CMOS compatible ferroelectric materials. ECS J Solid State Sci Technol 2:N69–N72

    Article  Google Scholar 

  • Sebastian A, Le Gallo M, Eleftheriou E (2019) Computational phase-change memory: beyond von Neumann computing. J Phys D 52:443002

    Article  Google Scholar 

  • Sengupta S, Wang SK, Liu K, Bhat K, Dhara S, Wu J, Deshmukh MM (2011) Field-effect modulation of conductance in VO2 nanobeam transistors with HfO2 as the gate dielectric. Appl Phys Lett 99:062114

    Article  Google Scholar 

  • Shao Z, Cao X, Luo H, Jin P (2018) Recent progress in phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater 10:581–605

    Article  Google Scholar 

  • Sharma P, Zhang J, Ni K, Datta S (2018) Time-resolved measurement of negative capacitance. IEEE Electron Dev Lett 39:272–275

    Article  Google Scholar 

  • Shukla N, Thathachary AV, Agrawal A, Paik H, Aziz A, Schlom DG, Gupta SK, Engel-Herbert R, Datta S (2015) A steep-slope transistor based on abrupt electronic phase transition. Nat Commun 6:7812

    Article  Google Scholar 

  • Si M, Su CJ, Jiang C, Conrad NJ, Zhou H, Maize KD, Qiu G, Wu C-T, Shakouri A, Alam MA, Ye PD (2018) Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat Nanotechnol 13:24–28

    Article  Google Scholar 

  • Slesazeck S, Mikolajick Thomas (2019) Nanoscale resistive switching memory devices: a review. Nanotechnology 30:352003

    Article  Google Scholar 

  • Song AM (2004) Room-temperature ballistic nanodevices. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology (vol 9). American Scientific Publisher, pp 371–389

    Google Scholar 

  • Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  • Tetzlaff R (2014) Memristors and memristive systems. Springer

    Google Scholar 

  • Tran T, Bray K, Ford MJ, Toth M, Aharonovich I (2016) Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol 11:37–41

    Article  Google Scholar 

  • Vicarelli L, Vitiello MS, Coquillat D, Lombardo A, Ferrari AC, Knap W, Polini M, Pellegrini V, Tredicucci A (2012) Graphene field-effect transistors as room-temperature terahertz detectors. Nat Mater 11:865–871

    Article  Google Scholar 

  • Wachter S, Polyushkin D, Bethge K, Mueller T (2017) A microprocessor based on a two-dimensional semiconductor. Nat Commun 8:14948

    Article  Google Scholar 

  • Wang ZM (ed) (2012) Quantum Dot devices, Springer

    Google Scholar 

  • Wang M, Cai S, Pan C, Wang C, Lian X, Zhuo Y, Xu K, Cao T, Pan X, Wang B, Liang S-J, Yang JJ, Wang P, Miao F (2018) Robust memristors based on layered two-dimensional materials. Nat Electron 1:130–136

    Article  Google Scholar 

  • Wang L, Liao W, Wong SL, Yu ZG, Li S, Lim Y-F, Feng X, Tan WC, Huang X, Chen L, Liu L, Chen J, Gong X, Zhu C, Liu X, Zhang Y-W, Chi D, Ang K-W (2019a) Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv Func Mater 29:1901106

    Article  Google Scholar 

  • Wang X, Yu P, Lei Z, Zhu C, Cao X, Liu F, You L, Zeng Q, Deng Y, Zhu C, Zhou J, Fu Q, Wang J, Huang Y, Liu Z (2019b) Van der Waals negative capacitance transistors. Nat Commun 10:3037

    Article  Google Scholar 

  • Wong JC, Salahuddin S (2019) Negative capacitance transistors. Proc IEEE 107:49–62

    Article  Google Scholar 

  • Wouters DJ, Waser R, Wuttig M (2015) Phase-change and redox-based resistive switching memories. Proc IEEE 103:1274–1288

    Article  Google Scholar 

  • Ye P, Ernst T, Khare MV (2019) The last silicon transistor: nanosheet devices could be the final evolutionary step for Moore’s Law. IEEE Spectr 56:30–35

    Article  Google Scholar 

  • Zak A, Andersson MA, Bauer M, Matukas J, Lisauskas A, Roskos HG, Stake J (2014) Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett 14:5834–5838

    Article  Google Scholar 

  • Zhang L, Chan M (2016) Tunneling field effect transistor technology. Spinger Nature

    Google Scholar 

  • Zhang X, Grajal J, Wang X, Radhakrishna U, Zhang Y, Kong J, Dresselhaus MS, Palacios T (2018) MoS2 phase-junction-based Schottky diodes for RF electronics. IEEE/MTT-S international microwave symposium, Philadelphia, USA, p 345

    Google Scholar 

  • Zhang L, Gong T, Wang H, Zhinan G, Zhang H (2019) Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 11:12413–12435

    Article  Google Scholar 

  • Zhou C, Chai Y (2017) Ferroelectric-gated two-dimensional materials-based electronic devices. Adv Electron Mater 3:1600400

    Article  Google Scholar 

  • Zhou Y, Ramanathan S (2015) Mott memory and neuromorphic devices. Proc IEEE 103:1289–1310

    Article  Google Scholar 

  • Zhou Y, Gweon G-H, Fedorov AV, First PN, de Heer WA, Lee D-H, Guinea F, Castro Neto AH, Lanzara A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6:770–775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Dragoman .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dragoman, M., Dragoman, D. (2021). Nanoelectronic Devices Enriching Moore’s Law. In: Atomic-Scale Electronics Beyond CMOS. Springer, Cham. https://doi.org/10.1007/978-3-030-60563-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60563-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60562-9

  • Online ISBN: 978-3-030-60563-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics