Skip to main content

Prosthetic Feedback Systems

  • Chapter
  • First Online:
Bionic Limb Reconstruction

Abstract

To fully replace the missing limb, a myoelectric prosthesis needs to provide a bidirectional communication between user’s brain and its bionic limb. And indeed, modern prosthetic hands are advanced mechatronic systems that approach the design and capabilities of biological hands both morphologically (size, shape, and weight) and functionally (degrees of freedom). In addition, these hands are controlled intuitively by mapping muscles’ activations to prosthesis functions using direct control or pattern classification. However, commercial systems do not yet provide somatosensory feedback to their users. In this chapter, we provide an overview of the methods and techniques that can be used to stimulate the sensory motor structures of an amputee subject in order to restore the missing sensations. We then discuss the prosthesis variables that are most often transmitted through the stimulation as well as the encoding schemes that can be used to map those variables to stimulation parameters. The contradictory evidence about the impact of feedback on the prosthesis performance is presented next, illustrating that designing, implementing, and assessing effective feedback interfaces is indeed a challenging task. Finally, the chapter ends with discussion and recommendation for further research that will hopefully lead to a successful solution for closed-loop prosthesis control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beckerle P, et al. Feel-good robotics: requirements on touch for embodiment in assistive robotics. Front Neurorobot. 2018;12:84. https://doi.org/10.3389/fnbot.2018.00084.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lederman SJ, Klatzky RL. Haptic perception: a tutorial. Attent Percept Psychophys. 2009;71(7):1439–59. https://doi.org/10.3758/APP.71.7.1439.

    Article  CAS  Google Scholar 

  3. Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006;16(6):541–8. https://doi.org/10.1016/j.jelekin.2006.08.006.

    Article  CAS  PubMed  Google Scholar 

  4. Vincent Evolution 2 Hand. 2019. http://vincentsystems.de/en/prosthetics/vincent-evolution-2/. Accessed 9 Oct 2014.

  5. Ability Hand. 2020. https://www.psyonic.co/abilityhand. Accessed 5 Nov 2020.

  6. Luke Arm. 2020. https://www.mobiusbionics.com/luke-arm/. Accessed 5 Nov 2020.

  7. Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2(6):346–57. https://doi.org/10.1080/17483100701714733.

    Article  PubMed  Google Scholar 

  8. Cordella F, et al. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016;10:209. https://doi.org/10.3389/fnins.2016.00209.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lewis S, et al. User demands for sensory feedback in upper extremity prostheses. In: 2012 IEEE international symposium on medical measurements and applications proceedings, IEEE; 2012. p. 1–4. https://doi.org/10.1109/MeMeA.2012.6226669.

  10. Lewis S, et al. Satisfaction of prosthesis users with electrical hand prostheses and their suggested improvements. Biomed Eng. 2013. https://doi.org/10.1515/bmt-2013-4385.

  11. Bach-y-Rita P, Kercel SW. Sensory substitution and the human–machine interface. Trends Cognit Sci. 2003;7(12):541–6. https://doi.org/10.1016/j.tics.2003.10.013.

    Article  Google Scholar 

  12. Kaczmarek KA, et al. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng. 1991;38(1):1–16. https://doi.org/10.1109/10.68204.

    Article  CAS  PubMed  Google Scholar 

  13. Szeto AY, Saunders FA. Electrocutaneous stimulation for sensory communication in rehabilitation engineering. IEEE Trans Biomed Eng. 1982;29(4):300–8. http://www.ncbi.nlm.nih.gov/pubmed/7068167. Accessed 12 Apr 2013.

    Article  CAS  Google Scholar 

  14. Gomez-Tames J, Gonzalez J, Yu W. A simulation study on the dominance of the tissues’ conductivity in the muscle recruitment. J Med Imaging Health Inform. 2013;3(1):72–8. https://doi.org/10.1166/jmihi.2013.1139.

    Article  Google Scholar 

  15. Gonzalez J, et al. Auditory display as a prosthetic hand biofeedback. J Med Imaging Health Inform. 2011;1(4):325–33. https://doi.org/10.1166/jmihi.2011.1051.

    Article  Google Scholar 

  16. Markovic M, et al. Stereovision and augmented reality for closed loop control of grasping in hand prostheses. J Neural Eng. 2014;11(4):046001.

    Article  Google Scholar 

  17. Markovic M, et al. GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses. J Neural Eng. 2017;14(3):036007. https://doi.org/10.1088/1741-2552/aa620a.

    Article  PubMed  Google Scholar 

  18. Clemente F, et al. Intraneural sensory feedback restores grip force control and motor coordination while using a prosthetic hand. J Neural Eng. 2019;16(2):026034. https://doi.org/10.1088/1741-2552/ab059b.

    Article  PubMed  Google Scholar 

  19. Raspopovic S, et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6(222):222ra19. https://doi.org/10.1126/scitranslmed.3006820.

    Article  PubMed  Google Scholar 

  20. Tabot GA, et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci U S A. 2013;110(45):18279–84. https://doi.org/10.1073/pnas.1221113110.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Engdahl SM, et al. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J Neuroeng Rehabil. 2015;12(1):53. https://doi.org/10.1186/s12984-015-0044-2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Childress DS. Closed-loop control in prosthetic systems: historical perspective. Ann Biomed Eng. 1980;8(4–6):293–303. https://doi.org/10.1007/BF02363433.

    Article  CAS  PubMed  Google Scholar 

  23. Schofield JS, et al. Applications of sensory feedback in motorized upper extremity prosthesis: a review. Expert Rev Med Devices. 2014;11(5):499–511. https://doi.org/10.1586/17434440.2014.929496.

    Article  CAS  PubMed  Google Scholar 

  24. Svensson P, et al. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev Med Devices. 2017;14(6):439–47. https://doi.org/10.1080/17434440.2017.1332989.

    Article  CAS  PubMed  Google Scholar 

  25. Sensinger JW, Dosen S. A Review of Sensory Feedback in Upper-Limb Prostheses From the Perspective of Human Motor Control. Front Neurosci. 2020;14:345.

    Google Scholar 

  26. Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature. 1998;394(6695):780–4. https://doi.org/10.1038/29528.

    Article  CAS  PubMed  Google Scholar 

  27. Dosen S, et al. Multichannel electrotactile feedback with spatial and mixed coding for closed-loop control of grasping force in hand prostheses. IEEE Trans Neural Syst Rehabil Eng. 2017;25(3):183–95. https://doi.org/10.1109/TNSRE.2016.2550864.

    Article  PubMed  Google Scholar 

  28. Mann RW. Kinesthetic sensing for the EMG controlled “Boston Arm”. IEEE Trans Man-Mach Syst. 1970;11(1):110–5. https://doi.org/10.1109/TMMS.1970.299971.

    Article  Google Scholar 

  29. Dosen S, Markovic M, Wille N, et al. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping. Exp Brain Res. 2015;233(6):1855–65. https://doi.org/10.1007/s00221-015-4257-1.

    Article  PubMed  Google Scholar 

  30. Lum PS, et al. Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb. Exp Brain Res. 2014;232:3785–95. https://doi.org/10.1007/s00221-014-4071-1.

    Article  PubMed  Google Scholar 

  31. Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J Neuroeng Rehabil. 2011;8(1):60. https://doi.org/10.1186/1743-0003-8-60.

    Article  PubMed  PubMed Central  Google Scholar 

  32. D’Alonzo M, et al. HyVE: hybrid vibro-electrotactile stimulation for sensory feedback and substitution in rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2014;22(2):290–301. https://doi.org/10.1109/TNSRE.2013.2266482.

    Article  PubMed  Google Scholar 

  33. D'Alonzo M, et al. HyVE—hybrid vibro-electrotactile stimulation—is an efficient approach to multi-channel sensory feedback. IEEE Trans Haptics. 2014;7(2):181–90. https://doi.org/10.1109/TOH.2013.52.

  34. Geng B, et al. Evaluation of sensation evoked by electrocutaneous stimulation on forearm in nondisabled subjects. J Rehabil Res Dev. 2012;49(2):297. https://doi.org/10.1682/JRRD.2010.09.0187.

    Article  PubMed  Google Scholar 

  35. Paredes LP, et al. The impact of the stimulation frequency on closed-loop control with electrotactile feedback. J Neuroeng Rehabil. 2015;12(1):35. https://doi.org/10.1186/s12984-015-0022-8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dosen S, Markovic M, Hartmann C, et al. Sensory feedback in prosthetics: a standardized test bench for closed-loop control. IEEE Trans Neural Syst Rehabil Eng. 2015;23(2):267–76. https://doi.org/10.1109/TNSRE.2014.2371238.

    Article  PubMed  Google Scholar 

  37. D’Anna E, et al. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci Rep. 2017;7(1):10930. https://doi.org/10.1038/s41598-017-11306-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shin H, et al. Evoked haptic sensations in the hand via non-invasive proximal nerve stimulation. J Neural Eng. 2018;15(4):046005. https://doi.org/10.1088/1741-2552/aabd5d.

    Article  PubMed  Google Scholar 

  39. Štrbac M, et al. Integrated and flexible multichannel interface for electrotactile stimulation. J Neural Eng. 2016;13(4):046014. https://doi.org/10.1088/1741-2560/13/4/046014.

    Article  PubMed  Google Scholar 

  40. Bolanowski SJ, et al. Four channels mediate the mechanical aspects of touch. J Acoust Soc Am. 1988;84(5):1680–94. http://www.ncbi.nlm.nih.gov/pubmed/3209773. Accessed 19 May 2014.

    Article  Google Scholar 

  41. Choi S, Kuchenbecker KJ. Vibrotactile display: perception, technology, and applications. Proc IEEE. 2013;101(9):2093–104. https://doi.org/10.1109/JPROC.2012.2221071.

    Article  Google Scholar 

  42. Jones LA, Sarter NB. Tactile displays: guidance for their design and application. Hum Factors. 2008;50(1):90–111. http://www.ncbi.nlm.nih.gov/pubmed/18354974. Accessed 19 May 2014.

    Article  Google Scholar 

  43. Dosen S, et al. A novel method to generate amplitude-frequency modulated vibrotactile stimulation. IEEE Trans Haptics. 2016;9(1):3–12. https://doi.org/10.1109/TOH.2015.2497229.

    Article  PubMed  Google Scholar 

  44. Cipriani C, D’Alonzo M, Carrozza MC. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Trans Biomed Eng. 2012;59(2):400–8. https://doi.org/10.1109/TBME.2011.2173342.

    Article  PubMed  Google Scholar 

  45. Azadi M, Jones LA. Vibrotactile actuators: effect of load and body site on performance. In: 2014 IEEE haptics symposium (HAPTICS), IEEE; 2014. p. 351–6. https://doi.org/10.1109/HAPTICS.2014.6775480.

  46. Antfolk C, D’Alonzo M, Controzzi M, et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng. 2013;21(1):112–20. https://doi.org/10.1109/TNSRE.2012.2217989.

    Article  PubMed  Google Scholar 

  47. Brown JD, et al. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. J Neuroeng Rehabil. 2015;12:104. https://doi.org/10.1186/s12984-015-0098-1.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wheeler J, et al. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):58–66. https://doi.org/10.1109/TNSRE.2009.2039602.

    Article  PubMed  Google Scholar 

  49. Schoepp KR, et al. Design and integration of an inexpensive wearable mechanotactile feedback system for myoelectric prostheses. IEEE J Transl Eng Health Med. 2018;6:1–11. https://doi.org/10.1109/JTEHM.2018.2866105.

    Article  Google Scholar 

  50. Battaglia E, et al. Skin stretch haptic feedback to convey closure information in anthropomorphic, under-actuated upper limb soft prostheses. IEEE Trans Haptics. 2019;12(4):508–20. https://doi.org/10.1109/TOH.2019.2915075.

    Article  PubMed  Google Scholar 

  51. Rossi M, et al. HapPro: a wearable haptic device for proprioceptive feedback. IEEE Trans Biomed Eng. 2019;66(1):138–49. https://doi.org/10.1109/TBME.2018.2836672.

    Article  PubMed  Google Scholar 

  52. Bark K, et al. Rotational skin stretch feedback: a wearable haptic display for motion. IEEE Trans Haptics. 2010;3(3):166–76. https://doi.org/10.1109/TOH.2010.21.

    Article  CAS  PubMed  Google Scholar 

  53. Akhtar A, et al. Passive mechanical skin stretch for multiple degree-of-freedom proprioception in a hand prosthesis; 2014. p. 120–8. https://doi.org/10.1007/978-3-662-44196-1_16.

  54. Prattichizzo D, et al. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback. IEEE Trans Haptics. 2013;6(4):506–16. https://doi.org/10.1109/TOH.2013.53.

    Article  PubMed  Google Scholar 

  55. Patterson PE, Katz JA. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev. 1992;29(1):1–8. http://www.ncbi.nlm.nih.gov/pubmed/1740774. Accessed 28 June 2013.

    Article  CAS  Google Scholar 

  56. Casini S, et al. Design and realization of the CUFF—clenching upper-limb force feedback wearable device for distributed mechano-tactile stimulation of normal and tangential skin forces. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE; 2015. p. 1186–93. https://doi.org/10.1109/IROS.2015.7353520.

  57. Dong J. On the use of subdermal electrical stimulation for restoration of sensory feedback. Aalborg University Press, PhD thesis; 2020.

    Google Scholar 

  58. Tan DW, et al. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138. https://doi.org/10.1126/scitranslmed.3008669.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gaunt RA, Hokanson JA, Weber DJ. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties. J Neural Eng. 2009;6(5):055009. https://doi.org/10.1088/1741-2560/6/5/055009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Loutit AJ, et al. Characterisation and functional mapping of surface potentials in the rat dorsal column nuclei. J Physiol. 2017;595(13):4507–24. https://doi.org/10.1113/JP273759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Flesher SN, et al. Intracortical microstimulation of human somatosensory cortex. Sci Transl Med. 2016;8(361):361ra141. https://doi.org/10.1126/scitranslmed.aaf8083.

    Article  PubMed  Google Scholar 

  62. Schiefer M, et al. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng. 2016;13(1):016001. https://doi.org/10.1088/1741-2560/13/1/016001.

    Article  PubMed  Google Scholar 

  63. Schiefer MA, et al. ‘Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS One. 2018;13(12):e0207659. https://doi.org/10.1371/journal.pone.0207659. Edited by M. Sakakibara.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tan DW, et al. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J Neural Eng. 2015;12(2):026002. https://doi.org/10.1088/1741-2560/12/2/026002.

    Article  PubMed  PubMed Central  Google Scholar 

  65. D’Anna E, et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback’. Sci Robot. 2019;4(27):eaau8892. https://doi.org/10.1126/scirobotics.aau8892.

    Article  PubMed  Google Scholar 

  66. Horch K, et al. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng. 2011;19(5):483–9. https://doi.org/10.1109/TNSRE.2011.2162635.

    Article  PubMed  Google Scholar 

  67. Valle G, et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron. 2018;100(1):37–45.e7. https://doi.org/10.1016/j.neuron.2018.08.033.

    Article  CAS  PubMed  Google Scholar 

  68. Valle G, et al. Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci Rep. 2018;8(1):16666. https://doi.org/10.1038/s41598-018-34910-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. George JA, et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci Robot. 2019;4(32):eaax2352. https://doi.org/10.1126/scirobotics.aax2352.

    Article  PubMed  Google Scholar 

  70. Wendelken S, et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J Neuroeng Rehabil. 2017;14(1):121. https://doi.org/10.1186/s12984-017-0320-4.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Saal HP, Bensmaia SJ. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia. 2015;79:344–53. https://doi.org/10.1016/j.neuropsychologia.2015.06.010.

    Article  PubMed  Google Scholar 

  72. Strauss I, et al. Characterization of multi-channel intraneural stimulation in transradial amputees. Sci Rep. 2019;9(1):19258. https://doi.org/10.1038/s41598-019-55591-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cuberovic I, et al. Learning of artificial sensation through long-term home use of a sensory-enabled prosthesis. Front Neurosci. 2019;13:1–24. https://doi.org/10.3389/fnins.2019.00853.

    Article  Google Scholar 

  74. Graczyk EL, et al. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci Rep. 2018;8(1):9866. https://doi.org/10.1038/s41598-018-26952-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Page DM, et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front Hum Neurosci. 2018;12:352. https://doi.org/10.3389/fnhum.2018.00352.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Petrini FM, et al. Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann Neurol. 2019;85(1):137–54. https://doi.org/10.1002/ana.25384.

    Article  PubMed  Google Scholar 

  77. Dong J, et al. The variability of psychophysical parameters following surface and subdermal stimulation: a multiday study in amputees. IEEE Trans Neural Syst Rehabil Eng. 2019;28(1):174–80. https://doi.org/10.1109/TNSRE.2019.2956836.

    Article  PubMed  Google Scholar 

  78. Dong J, et al. The short-term repeatability of subdermal electrical stimulation for sensory feedback. IEEE Access. 2020;8:63983–92. https://doi.org/10.1109/ACCESS.2020.2984534.

    Article  Google Scholar 

  79. Clemente F, Cipriani C. A novel device for multi-modal sensory feedback in hand prosthetics: design and preliminary prototype. In: 2014 IEEE haptics symposium (HAPTICS), IEEE; 2014. p. 569–73. https://doi.org/10.1109/HAPTICS.2014.6775518.

  80. Huang H, et al. Multi-modal Sensory feedback system for upper limb amputees. In: 2017 new generation of CAS (NGCAS), IEEE; 2017. p. 193–6. https://doi.org/10.1109/NGCAS.2017.62.

  81. Keehoon K, et al. On the design of miniature haptic devices for upper extremity prosthetics. IEEE/ASME Trans Mechatron. 2010;15(1):27–39. https://doi.org/10.1109/TMECH.2009.2013944.

    Article  Google Scholar 

  82. Antfolk C, D’Alonzo M, Rosén B, et al. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10(1):45–54. https://doi.org/10.1586/erd.12.68.

    Article  CAS  PubMed  Google Scholar 

  83. Belter JT, et al. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J Rehabil Res Dev. 2013;50(5):599–618. http://www.ncbi.nlm.nih.gov/pubmed/24013909. Accessed 9 Jul 2014.

    Article  Google Scholar 

  84. Chatterjee A, et al. Testing a prosthetic haptic feedback simulator with an interactive force matching task. JPO J Prosthet Orthot. 2008;20(2):27–34. https://doi.org/10.1097/01.JPO.0000311041.61628.be.

    Article  Google Scholar 

  85. Cipriani C, et al. On the shared control of an EMG-controlled prosthetic hand: analysis of user–prosthesis interaction. IEEE Trans Robot. 2008;24(1):170–84. https://doi.org/10.1109/TRO.2007.910708.

    Article  Google Scholar 

  86. Jorgovanovic N, et al. Virtual grasping: closed-loop force control using electrotactile feedback. Comput Math Methods Med. 2014;2014:120357. https://doi.org/10.1155/2014/120357.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pylatiuk C, Kargov A, Schulz S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. JPO J Prosthet Orthot. 2006;18(2):57–61. https://doi.org/10.1097/00008526-200604000-00007.

    Article  Google Scholar 

  88. Szeto AY, Farrenkopf GR. Optimization of single electrode tactile codes. Ann Biomed Eng. 1992;20(6):647–65. http://www.ncbi.nlm.nih.gov/pubmed/1449232. Accessed 18 Nov 2013.

    Article  CAS  Google Scholar 

  89. Szeto AYJ, Lyman J. Comparison of codes for sensory feedback using electrocutaneous tracking. Ann Biomed Eng. 1977;5(4):367–83. https://doi.org/10.1007/BF02367316.

    Article  CAS  PubMed  Google Scholar 

  90. Anani AB, Ikeda K, Körner LM. Human ability to discriminate various parameters in afferent electrical nerve stimulation with particular reference to prostheses sensory feedback. Med Biol Eng Comput. 1977;15(4):363–73.

    Article  CAS  Google Scholar 

  91. Anani AB, Körner LM. Afferent electrical nerve stimulation: human tracking performance relevant to prosthesis sensory feedback. Med Biol Eng Comput. 1979;17(4):425–34. https://doi.org/10.1007/BF02447053.

    Article  CAS  PubMed  Google Scholar 

  92. Guemann M, et al. Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees. J Neuroeng Rehabil. 2019;16(1):138. https://doi.org/10.1186/s12984-019-0597-6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Antfolk C. A tactile display system for hand prostheses to discriminate pressure and individual finger localization. J Med Biol Eng. 2010;30(6):355. https://doi.org/10.5405/jmbe.766.

    Article  Google Scholar 

  94. Cipriani C, et al. A novel concept for a prosthetic hand with a bidirectional interface: a feasibility study. IEEE Trans Biomed Eng. 2009;56(11):2739–43. https://doi.org/10.1109/TBME.2009.2031242.

    Article  PubMed  Google Scholar 

  95. Johansson RS, Cole KJ. Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol. 1992;2(6):815–23. http://www.ncbi.nlm.nih.gov/pubmed/1477545. Accessed 17 Sept 2013.

    Article  CAS  Google Scholar 

  96. Ninu A, et al. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? IEEE Trans Neural Syst Rehabil Eng. 2014;22(5):1041–52. https://doi.org/10.1109/TNSRE.2014.2318431.

    Article  PubMed  Google Scholar 

  97. Dosen S, Markovic M, Somer K, et al. EMG biofeedback for online predictive control of grasping force in a myoelectric prosthesis. J Neuroeng Rehabil. 2015;12(1):55. https://doi.org/10.1186/s12984-015-0047-z.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schweisfurth MA, et al. Electrotactile EMG feedback improves the control of prosthesis grasping force. J Neural Eng. 2016;13(5):056010. https://doi.org/10.1088/1741-2560/13/5/056010.

    Article  PubMed  Google Scholar 

  99. Shehata AW, et al. Improving internal model strength and performance of prosthetic hands using augmented feedback. J Neuroeng Rehabil. 2018;15(1):70. https://doi.org/10.1186/s12984-018-0417-4.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Shehata AW, Scheme EJ, Sensinger JW. Audible feedback improves internal model strength and performance of myoelectric prosthesis control. Sci Rep. 2018;8(1):8541. https://doi.org/10.1038/s41598-018-26810-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aboseria M, et al. Discrete vibro-tactile feedback prevents object slippage in hand prostheses more intuitively than other modalities. IEEE Trans Neural Syst Rehabil Eng. 2018;26(8):1577–84. https://doi.org/10.1109/TNSRE.2018.2851617.

    Article  PubMed  Google Scholar 

  102. Clemente F, et al. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans Neural Syst Rehabil Eng. 2016;24(12):1314–22. https://doi.org/10.1109/TNSRE.2015.2500586.

    Article  PubMed  Google Scholar 

  103. Flanagan JR, Bowman MC, Johansson RS. Control strategies in object manipulation tasks. Curr Opin Neurobiol. 2006;16(6):650–9. https://doi.org/10.1016/j.conb.2006.10.005.

    Article  CAS  PubMed  Google Scholar 

  104. Johansson RS, Flanagan JR. Tactile sensory control of object manipulation in humans. In: The senses: a comprehensive reference. Elsevier; 2008. p. 67–86. https://doi.org/10.1016/B978-012370880-9.00346-7.

  105. Engels LF, et al. When less is more—discrete tactile feedback dominates continuous audio biofeedback in the integrated percept while controlling a myoelectric prosthetic hand. Front Neurosci. 2019;13:578. https://doi.org/10.3389/fnins.2019.00578.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zollo L, et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci Robot. 2019;4(27):1–12. https://doi.org/10.1126/scirobotics.aau9924.

    Article  Google Scholar 

  107. Witteveen HJB, et al. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012;59(8):2219–26. https://doi.org/10.1109/TBME.2012.2200678.

    Article  CAS  PubMed  Google Scholar 

  108. Witteveen HJ, Rietman HS, Veltink PH. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthet Orthot Int. 2015;39(3):204–12. https://doi.org/10.1177/0309364614522260.

    Article  PubMed  Google Scholar 

  109. Erwin A, Sup FC. A haptic feedback scheme to accurately position a virtual wrist prosthesis using a three-node tactor array. PLoS One. 2015;10(8):e0134095. https://doi.org/10.1371/journal.pone.0134095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Patel GK, et al. Multichannel electrotactile feedback for simultaneous and proportional myoelectric control. J Neural Eng. 2016;13(5):056015. https://doi.org/10.1088/1741-2560/13/5/056015.

    Article  PubMed  Google Scholar 

  111. Cheng A, et al. Conveying the configuration of a virtual human hand using vibrotactile feedback. In: 2012 IEEE haptics symposium (HAPTICS), IEEE; 2012. p. 155–62. https://doi.org/10.1109/HAPTIC.2012.6183784.

  112. Battaglia E, et al. The rice haptic rocker: skin stretch haptic feedback with the Pisa/IIT SoftHand. In: 2017 IEEE world haptics conference (WHC), IEEE; 2017. p. 7–12. https://doi.org/10.1109/WHC.2017.7989848.

  113. Marasco PD, et al. Illusory movement perception improves motor control for prosthetic hands. Sci Transl Med. 2018;10(432):1–13. https://doi.org/10.1126/scitranslmed.aao6990.

    Article  Google Scholar 

  114. Arakeri TJ, Hasse BA, Fuglevand AJ. Object discrimination using electrotactile feedback. J Neural Eng. 2018;15(4):046007. https://doi.org/10.1088/1741-2552/aabc9a.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Schiefer MA, et al. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS One. 2018;13(12):1–18. https://doi.org/10.1371/journal.pone.0207659.

    Article  CAS  Google Scholar 

  116. Zafar M, Van Doren CL. Effectiveness of supplemental grasp-force feedback in the presence of vision. Med Biol Eng Comput. 2000;38(3):267–74. https://doi.org/10.1007/BF02347046.

    Article  CAS  PubMed  Google Scholar 

  117. Raveh E, Friedman J, Portnoy S. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Assist Technol. 2017;30(8):1–7. https://doi.org/10.1080/10400435.2017.1323809.

    Article  Google Scholar 

  118. Witteveen HJB, et al. Stiffness feedback for myoelectric forearm prostheses using vibrotactile stimulation. IEEE Trans Neural Syst Rehabil Eng. 2014;22(1):53–61. https://doi.org/10.1109/TNSRE.2013.2267394.

    Article  PubMed  Google Scholar 

  119. Rombokas E, et al. Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Trans Biomed Eng. 2013;60(8):2226–32. https://doi.org/10.1109/TBME.2013.2252174.

    Article  PubMed  Google Scholar 

  120. Stepp CE, An Q, Matsuoka Y. Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PLoS One. 2012;7(2):e32743. https://doi.org/10.1371/journal.pone.0032743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Meek SG, Jacobsen SC, Goulding PP. Extended physiologic taction: design and evaluation of a proportional force feedback system. J Rehabil Res Dev. 1989;26(3):53–62. http://www.ncbi.nlm.nih.gov/pubmed/2666644. Accessed 28 June 2013.

    CAS  PubMed  Google Scholar 

  122. Strbac M, et al. Short- and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees. IEEE Trans Neural Syst Rehabil Eng. 2017;25(11):2133–45. https://doi.org/10.1109/TNSRE.2017.2712287.

    Article  PubMed  Google Scholar 

  123. Markovic M, Schweisfurth MA, et al. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. J Neuroeng Rehabil. 2018;15(1):81. https://doi.org/10.1186/s12984-018-0422-7.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Markovic M, Schweisfurth MA, et al. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. J Neuroeng Rehabil. 2018;15(1):28. https://doi.org/10.1186/s12984-018-0371-1.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pistohl T, et al. Artificial proprioceptive feedback for myoelectric control. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):498–507. https://doi.org/10.1109/TNSRE.2014.2355856.

    Article  PubMed  Google Scholar 

  126. Hasson CJ, Manczurowsky J. Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm. J Neuroeng Rehabil. 2015;12(1):31. https://doi.org/10.1186/s12984-015-0025-5.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ehrsson HH, et al. Upper limb amputees can be induced to experience a rubber hand as their own. Brain. 2008;131(12):3443–52. https://doi.org/10.1093/brain/awn297.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Rosén B, et al. Referral of sensation to an advanced humanoid robotic hand prosthesis. Scand J Plastic Reconstruct Surg Hand Surg. 2009;43(5):260–6. https://doi.org/10.3109/02844310903113107.

    Article  Google Scholar 

  129. Marasco PD, et al. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain. 2011;134(Pt 3):747–58. https://doi.org/10.1093/brain/awq361.

    Article  PubMed  PubMed Central  Google Scholar 

  130. D’Alonzo M, Clemente F, Cipriani C. Vibrotactile stimulation promotes embodiment of an alien hand in amputees with phantom sensations. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):450–7. https://doi.org/10.1109/TNSRE.2014.2337952.

    Article  PubMed  Google Scholar 

  131. Marini F, et al. Crossmodal representation of a functional robotic hand arises after extensive training in healthy participants. Neuropsychologia. 2014;53:178–86. https://doi.org/10.1016/j.neuropsychologia.2013.11.017.

    Article  PubMed  Google Scholar 

  132. Flor H, et al. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet. 2001;357(9270):1763–4. https://doi.org/10.1016/S0140-6736(00)04890-X.

    Article  CAS  PubMed  Google Scholar 

  133. Dietrich C, et al. Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci Lett. 2012;507(2):97–100. https://doi.org/10.1016/j.neulet.2011.10.068.

    Article  CAS  PubMed  Google Scholar 

  134. Dietrich C, et al. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Front Neurol. 2018;9:270. https://doi.org/10.3389/fneur.2018.00270.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Beeker TW, During J, Den Hertog A. Artificial touch in a hand-prosthesis. Med Biol Eng. 1967;5(1):47–9. http://www.ncbi.nlm.nih.gov/pubmed/6037625.

    Article  CAS  Google Scholar 

  136. Prior RE, et al. Supplemental sensory feedback for the VA/NU myoelectric hand. Background and preliminary designs. Bull Prosthet Res. 1976;170–91.

    Google Scholar 

  137. Johnson RE, et al. Does EMG control lead to distinct motor adaptation? Front Neurosci. 2014;8:302. https://doi.org/10.3389/fnins.2014.00302.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Johnson RE, et al. EMG versus torque control of human-machine systems: equalizing control signal variability does not equalize error or uncertainty. IEEE Trans Neural Syst Rehabil Eng. 2017;25(6):660–7. https://doi.org/10.1109/TNSRE.2016.2598095.

    Article  PubMed  Google Scholar 

  139. Davidson PR, Wolpert DM. Widespread access to predictive models in the motor system: a short review. J Neural Eng. 2005;2(3):S313–9. https://doi.org/10.1088/1741-2560/2/3/S11.

    Article  PubMed  Google Scholar 

  140. Berniker M, Kording K. Bayesian approaches to sensory integration for motor control. Wiley Interdiscip Rev Cognit Sci. 2011;2(4):419–28. https://doi.org/10.1002/wcs.125.

    Article  Google Scholar 

  141. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81. https://doi.org/10.1007/s00221-008-1280-5.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci. 2002;5(11):1226–35. https://doi.org/10.1038/nn963.

    Article  CAS  PubMed  Google Scholar 

  143. Wilke MA, et al. Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis. J Neuroeng Rehabil. 2019;16(1):155. https://doi.org/10.1186/s12984-019-0622-9.

    Article  PubMed  PubMed Central  Google Scholar 

  144. SynTouch. BioTac senzorized finger. 2014. http://www.syntouchllc.com/Media/Blog/2013-08-27-S.

  145. Kim J, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun. 2014;5:5747. https://doi.org/10.1038/ncomms6747.

    Article  CAS  PubMed  Google Scholar 

  146. Franceschi M, et al. A system for electrotactile feedback using electronic skin and flexible matrix electrodes: experimental evaluation. IEEE Trans Haptics. 2017;10(2):162–72. https://doi.org/10.1109/TOH.2016.2618377.

    Article  PubMed  Google Scholar 

  147. Osborn LE, et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci Robot. 2018;3(19):eaat3818. https://doi.org/10.1126/scirobotics.aat3818.

    Article  Google Scholar 

  148. Pasquina PF, et al. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J Neurosci Methods. 2015;244:85–93. https://doi.org/10.1016/j.jneumeth.2014.07.016.

    Article  PubMed  Google Scholar 

  149. Mastinu E, et al. Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. J Neuroeng Rehabil. 2019;16(1):49. https://doi.org/10.1186/s12984-019-0511-2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Strahinja Dosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dosen, S., Prahm, C., Amsüss, S., Vujaklija, I., Farina, D. (2021). Prosthetic Feedback Systems. In: Aszmann, O.C., Farina, D. (eds) Bionic Limb Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-030-60746-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60746-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60745-6

  • Online ISBN: 978-3-030-60746-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics