Skip to main content

Automated Machine Learning: Techniques and Frameworks

  • Conference paper
  • First Online:
Big Data Management and Analytics (eBISS 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 390))

Included in the following conference series:

Abstract

Nowadays, machine learning techniques and algorithms are employed in almost every application domain (e.g., financial applications, advertising, recommendation systems, user behavior analytics). In practice, they are playing a crucial role in harnessing the power of massive amounts of data which we are currently producing every day in our digital world. In general, the process of building a high-quality machine learning model is an iterative, complex and time-consuming process that involves trying different algorithms and techniques in addition to having a good experience with effectively tuning their hyper-parameters. In particular, conducting this process efficiently requires solid knowledge and experience with the various techniques that can be employed. With the continuous and vast increase of the amount of data in our digital world, it has been acknowledged that the number of knowledgeable data scientists can not scale to address these challenges. Thus, there was a crucial need for automating the process of building good machine learning models (AutoML). In the last few years, several techniques and frameworks have been introduced to tackle the challenge of automating the machine learning process. The main aim of these techniques is to reduce the role of humans in the loop and fill the gap for non-expert machine learning users by playing the role of the domain expert. In this chapter, we present an overview of the state-of-the-art efforts in tackling the challenges of machine learning automation. We provide a comprehensive coverage for the various tools and frameworks that have been introduced in this domain. In addition, we discuss some of the research directions and open challenges that need to be addressed in order to achieve the vision and goals of the AutoML process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Forbes: How Much Data Do We Create Every Day? May 21, 2018.

  2. 2.

    https://hbr.org/2015/05/data-scientists-dont-scale.

  3. 3.

    https://www.openml.org/d/40597.

  4. 4.

    https://www.openml.org/t/2073.

  5. 5.

    https://www.cs.ubc.ca/labs/beta/Projects/autoweka/.

  6. 6.

    https://www.cs.waikato.ac.nz/ml/weka/.

  7. 7.

    http://waikato.github.io/meka/.

  8. 8.

    https://github.com/automl/auto-sklearn.

  9. 9.

    https://scikit-learn.org/.

  10. 10.

    https://automl.info/tpot/.

  11. 11.

    https://github.com/fmohr/ML-Plan.

  12. 12.

    https://github.com/DataSystemsGroupUT/SmartML.

  13. 13.

    https://github.com/udellgroup/oboe/tree/master/automl.

  14. 14.

    https://github.com/rsheth80/pmf-automl.

  15. 15.

    https://github.com/HDI-Project/ATMSeer.

  16. 16.

    https://cloud.google.com/automl/.

  17. 17.

    https://docs.microsoft.com/en-us/azure/machine-learning/service/.

  18. 18.

    https://aws.amazon.com/machine-learning/.

  19. 19.

    http://www.mlbase.org/.

  20. 20.

    https://github.com/HDI-Project/ATM.

  21. 21.

    https://transmogrif.ai/.

  22. 22.

    https://github.com/AxeldeRomblay/MLBox.

  23. 23.

    https://github.com/hyperopt/hyperopt.

  24. 24.

    https://github.com/nginyc/rafiki.

  25. 25.

    https://github.com/Microsoft/nni.

  26. 26.

    https://github.com/joeddav/devol.

  27. 27.

    https://azure.microsoft.com/en-us/.

  28. 28.

    https://cloud.google.com/.

  29. 29.

    https://aws.amazon.com/.

  30. 30.

    https://mahout.apache.org/.

  31. 31.

    https://www.4paradigm.com/competition/nips2018.

  32. 32.

    http://automl.chalearn.org/.

  33. 33.

    https://www.openml.org/d/183.

References

  1. Zomaya, A.Y., Sakr, S. (eds.): Handbook of Big Data Technologies. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49340-4

    Book  Google Scholar 

  2. Sakr, S., Zomaya, A.Y. (eds.): Encyclopedia of Big Data Technologies. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77525-8

    Book  Google Scholar 

  3. Fitzgerald, B.: Software crisis 2.0. Computer 45(4), 89–91 (2012)

    Article  Google Scholar 

  4. Vafeiadis, T., Diamantaras, K.I., Sarigiannidis, G., Chatzisavvas, K.C.: A comparison of machine learning techniques for customer churn prediction. Simul. Modell. Pract. Theory 55, 1–9 (2015)

    Article  Google Scholar 

  5. Probst, P., Boulesteix, A.-L.: To tune or not to tune the number of trees in random forest. J. Mach. Learn. Res. 18, 181–1 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA. J. Mach. Learn. Res. 18(1), 826–830 (2017)

    MathSciNet  Google Scholar 

  8. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In Proceedings of the 28th International Conference on Neural Information Processing Systems, NIPS 2015, vol. 2, pp. 2755–2763 (2015). MIT Press, Cambridge

    Google Scholar 

  9. Maher, M., Sakr, S.: SmartML: a meta learning-based framework for automated selection and hyperparameter tuning for machine learning algorithms. In EDBT: 22nd International Conference on Extending Database Technology (2019)

    Google Scholar 

  10. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications to Data Mining. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73263-1

    Book  MATH  Google Scholar 

  11. Vanschoren, J.: Meta-learning: a survey. CoRR, abs/1810.03548 (2018)

    Google Scholar 

  12. Bilalli, B., Abelló, A., Aluja-Banet, T.: On the predictive power of meta-features in OpenML. Int. J. Appl. Math. Comput. Sci. 27(4), 697–712 (2017)

    Article  MathSciNet  Google Scholar 

  13. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning. In: International Conference on Machine Learning, pp. 199–207 (2013)

    Google Scholar 

  14. Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)

    Article  MATH  Google Scholar 

  15. Nisioti, E., Chatzidimitriou, K., Symeonidis, A.: Predicting hyperparameters from meta-features in binary classification problems. In: AutoML Workshop at ICML (2018)

    Google Scholar 

  16. Köpf, C., Iglezakis, I.: Combination of task description strategies and case base properties for meta-learning. In: Proceedings of the 2nd International Workshop on Integration and Collaboration Aspects of Data Mining, Decision Support and Meta-learning, pp. 65–76 (2002)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Giraud-Carrier, C.: Metalearning-a tutorial. In: Tutorial at the 7th International Conference on Machine Learning and Applications (ICMLA), San Diego, California, USA (2008)

    Google Scholar 

  19. Brazdil, P.B., Soares, C., Da Costa, J.P.: Ranking learning algorithms: using IBL and meta-learning on accuracy and time results. Mach. Learn. 50(3), 251–277 (2003)

    Article  MATH  Google Scholar 

  20. dos Santos, P.M., Ludermir, T.B., Prudencio, R.B.C.: Selection of time series forecasting models based on performance information. In: Fourth International Conference on Hybrid Intelligent Systems (HIS 2004), pp. 366–371. IEEE (2004)

    Google Scholar 

  21. Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic classifier selection for non-experts. Pattern Anal. Appl. 17(1), 83–96 (2014)

    Article  MathSciNet  Google Scholar 

  22. Guerra, S.B., Prudêncio, R.B.C., Ludermir, T.B.: Predicting the performance of learning algorithms using support vector machines as meta-regressors. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008. LNCS, vol. 5163, pp. 523–532. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87536-9_54

    Chapter  Google Scholar 

  23. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  24. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012)

    Google Scholar 

  25. Baxter, J.: Learning internal representations. Flinders University of South Australia (1995)

    Google Scholar 

  26. Caruana, R.: Learning many related tasks at the same time with backpropagation. In: Advances in Neural Information Processing Systems, pp. 657–664 (1995)

    Google Scholar 

  27. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  28. Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  29. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  30. Davis, L.: Handbook of genetic algorithms. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science. Springer, Boston (1991)

    Google Scholar 

  31. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Boa: the Bayesian optimization algorithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 1, pp. 525–532. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  32. Polak, E.: Optimization: Algorithms and Consistent Approximations, vol. 124. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0663-7

    Book  MATH  Google Scholar 

  33. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2017)

    Google Scholar 

  34. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Zhilinskas, A.G.: Single-step Bayesian search method for an extremum of functions of a single variable. Cybern. Syst. Anal. 11(1), 160–166 (1975)

    Article  Google Scholar 

  36. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Snoek, J., et al.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning, pp. 2171–2180 (2015)

    Google Scholar 

  38. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  39. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8609–8613. IEEE (2013)

    Google Scholar 

  40. Melis, G., Dyer, C., Blunsom, P.: On the state of the art of evaluation in neural language models. arXiv preprint arXiv:1707.05589 (2017)

  41. Martinez-Cantin, R.: BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits. J. Mach. Learn. Res. 15(1), 3735–3739 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  43. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  44. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)

    Google Scholar 

  45. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures (2013)

    Google Scholar 

  46. Eggensperger, K., et al.: Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In: NIPS Workshop on Bayesian Optimization in Theory and Practice, vol. 10, p. 3 (2013)

    Google Scholar 

  47. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. arXiv preprint arXiv:1807.01774 (2018)

  48. Sparks, E.R., Talwalkar, A., Haas, D., Franklin, M.J., Jordan, M.I., Kraska, T.: Automating model search for large scale machine learning. In: Proceedings of the Sixth ACM Symposium on Cloud Computing, pp. 368–380. ACM (2015)

    Google Scholar 

  49. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  50. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, Cambridge (1992)

    Book  Google Scholar 

  51. Fernández-Godino, M.G., Park, C., Kim, N.-H., Haftka, R.T.: Review of multi-fidelity models. arXiv preprint arXiv:1609.07196 (2016)

  52. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  53. Jamieson, K.G., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter optimization. In: AISTATS, pp. 240–248 (2016)

    Google Scholar 

  54. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. arXiv preprint arXiv:1603.06560 (2016)

  55. de Sá, A.G.C., Freitas, A.A., Pappa, G.L.: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 308–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_25

    Chapter  Google Scholar 

  56. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4_34

    Chapter  Google Scholar 

  57. Read, J., Reutemann, P., Pfahringer, B., Holmes, G.: MEKA: a multi-label/multi-target extension to WEKA. J. Mach. Learn. Res. 17(1), 667–671 (2016)

    MathSciNet  MATH  Google Scholar 

  58. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. In: ICML Workshop on AutoML, pp. 2825–2830 (2014)

    Google Scholar 

  59. Bergstra, J.., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in Science Conference, pp. 13–20 (2013)

    Google Scholar 

  60. Olson, R.S., Moore, J.H.: TPOT:: a tree-based pipeline optimization tool for automating machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Proceedings of the Workshop on Automatic Machine Learning, volume 64 of Proceedings of Machine Learning Research, pp. 66–74, New York, USA, 24 Jun 2016. PMLR

    Google Scholar 

  61. de Sá, A.G.C., Pinto, W.J.G.S., Oliveira, L.O.V.B., Pappa, G.L.: RECIPE: a grammar-based framework for automatically evolving classification pipelines. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 246–261. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_16

    Chapter  Google Scholar 

  62. Mohr, F., Wever, M., Hüllermeier, E.: ML-plan: automated machine learning via hierarchical planning. Mach. Learn. 107(8–10), 1495–1515 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Chen, B., Wu, H., Mo, W., Chattopadhyay, I., Lipson, H.: Autostacker: a compositional evolutionary learning system. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 402–409. ACM, New York (2018)

    Google Scholar 

  64. Drori, I., et al.: AlphaD3M: machine learning pipeline synthesis. In: AutoML Workshop at ICML (2018)

    Google Scholar 

  65. Yang, C., Akimoto, Y., Kim, D.W., Udell, M.: OBOE: collaborative filtering for AutoML initialization. arXiv preprint arXiv:1808.03233 (2019)

  66. Fusi, N., Sheth, R., Elibol, H.M.: Probabilistic matrix factorization for automated machine learning. arXiv preprint arXiv:1705.05355 (2017)

  67. Shang, Z., et al.: Democratizing data science through interactive curation of ml pipelines. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD) (2019)

    Google Scholar 

  68. Kraska, T., Talwalkar, A., Duchi, J.C., Griffith, R., Franklin, M.J., Jordan, M.I.: MLbase: a distributed machine-learning system. In: CIDR, vol. 1, pp. 1–2 (2013)

    Google Scholar 

  69. Wang, Q., et al.: ATMseer: increasing transparency and controllability in automated machine learning. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, p. 681. ACM (2019)

    Google Scholar 

  70. Meng, X., et al.: MLlib: machine learning in apache spark. J. Mach. Learn. Res. 17(1), 1235–1241 (2016)

    MathSciNet  MATH  Google Scholar 

  71. Swearingen, T., Drevo, W., Cyphers, B., Cuesta-Infante, A., Ross, A., Veeramachaneni, K.: ATM: a distributed, collaborative, scalable system for automated machine learning, pp. 151–162, December 2017

    Google Scholar 

  72. Wei Wang, et al.: Rafiki: machine learning as an analytics service system. CoRR, abs/1804.06087 (2018)

    Google Scholar 

  73. Bengio, Y., et al.: Learning deep architectures for AI. Foundations Trends® Mach. Learn. 2(1), 1–127 (2009)

    Article  MATH  Google Scholar 

  74. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  75. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

  76. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  77. Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34 (2018)

    Google Scholar 

  78. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436 (2017)

  79. Hoffer, E., Hubara, I., Soudry, D.: Train longer, generalize better: Closing the generalization gap in large batch training of neural networks. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, USA, pp. 1729–1739. Curran Associates Inc. (2017)

    Google Scholar 

  80. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture search (2019)

    Google Scholar 

  81. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement Learning, vol. 135. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  82. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

  83. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

  84. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  85. Shin, R., Packer, C., Song, D.: Differentiable neural network architecture search (2018)

    Google Scholar 

  86. Ahmed, K., Torresani, L.: MaskConnect: connectivity learning by gradient descent. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 362–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_22

    Chapter  Google Scholar 

  87. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. In: ICGA, vol. 89, pages 379–384 (1989)

    Google Scholar 

  88. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  89. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  90. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

    Article  Google Scholar 

  91. Lu, Z., et al.: NSGA-Net: a multi-objective genetic algorithm for neural architecture search. arXiv preprint arXiv:1810.03522 (2018)

  92. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture search via Lamarckian evolution (2018)

    Google Scholar 

  93. Liang, J., Meyerson, E., Hodjat, B., Fink, D., Mutch, K., Miikkulainen, R.: Evolutionary neural AutoML for deep learning (2019)

    Google Scholar 

  94. Miikkulainen, R., et al.: Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 293–312. Elsevier (2019)

    Google Scholar 

  95. Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2902–2911. JMLR. org (2017)

    Google Scholar 

  96. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548 (2018)

  97. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.: Neural architecture search with Bayesian optimisation and optimal transport (2018)

    Google Scholar 

  98. Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.A.: Raiders of the lost architecture: kernels for Bayesian optimization in conditional parameter spaces. arXiv preprint arXiv:1409.4011 (2014)

  99. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Hutter, F.: Towards automatically-tuned neural networks. In: Workshop on Automatic Machine Learning, pp. 58–65 (2016)

    Google Scholar 

  100. Klein, A., Christiansen, E., Murphy, K., Hutter, F.: Towards reproducible neural architecture and hyperparameter search (2018)

    Google Scholar 

  101. Jin, H., Song, Q., Hu, X.: Efficient neural architecture search with network morphism. CoRR, abs/1806.10282 (2018)

    Google Scholar 

  102. Dieleman, S., et al.: Lasagne: first release, August 2015 (2016), 7878. https://doi.org/10.5281/zenodo

  103. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  104. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  105. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(o(1/k^{2})\)\(o(1/k2)\). Sov. Math. Dokl. 27

    Google Scholar 

  106. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  107. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

  108. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.-Y.: Neural architecture optimization. In: Advances in Neural Information Processing Systems, pp. 7816–7827 (2018)

    Google Scholar 

  109. Boehm, M., et al.: SystemML: declarative machine learning on spark. Proc. VLDB Endowment 9(13), 1425–1436 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work of Sherif Sakr is funded by the European Regional Development Funds via the Mobilitas Plus programme (grant MOBTT75). The work of Radwa Elshawi is funded by the European Regional Development Funds via the Mobilitas Plus programme (MOBJD341). The authors would like to thank Mohamed Maher for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwa Elshawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elshawi, R., Sakr, S. (2020). Automated Machine Learning: Techniques and Frameworks. In: Kutsche, RD., Zimányi, E. (eds) Big Data Management and Analytics. eBISS 2019. Lecture Notes in Business Information Processing, vol 390. Springer, Cham. https://doi.org/10.1007/978-3-030-61627-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61627-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61626-7

  • Online ISBN: 978-3-030-61627-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics