Skip to main content

Geocaching-Inspired Navigation for Micro Aerial Vehicles with Fallible Place Recognition

  • Conference paper
  • First Online:
Ad-Hoc, Mobile, and Wireless Networks (ADHOC-NOW 2020)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12338))

Included in the following conference series:

Abstract

This paper extends an existing decisional framework for the navigation of Micro Aerial Vehicle (MAV) swarms. The work finds inspiration in the geocaching outdoor game. It leverages place recognition methods, information sharing and collaborative work between MAVs. It is unique in that a priori none of the MAVs knows the trajectory, waypoints and destination. The MAVs collectively solve a series of problems that involve the recognition of physical places and determination of their GPS coordinates. Our algorithm builds upon various methods that had been created for place recognition. The need for a decisional framework comes from the fact that all methods are fallible and make place recognition errors. In this paper, we augment the navigation algorithm with a decisional framework resolving conflicts resulting from errors made by place recognition methods. The errors divide the members of a swarm with respect to the location of waypoints (i.e., some members continue the trip following the proper itinary; others follow a wrong one). We propose four decisional algorithms to resolve conflicts among members of a swarm due to place recognition errors. The performance of the decisional algorithms is modeled and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/jgalfaro/mirrored-geomav.

References

  1. Aerial Robots for Sewer Inspection, “ARSI”. http://echord.eu/essential_grid/arsi/. Accessed 2019

  2. DHL: “DHL’s Parcelcopter: changing shipping forever”. http://bit.ly/2WV7KcO. Accessed 2019

  3. Altigator: “Drones for search and rescue missions”. https://altigator.com/drones-for-search-rescue-missions/. Accessed 2019

  4. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  5. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning, Department of Computer Science, Iowa State University, Technical report (1998)

    Google Scholar 

  6. LaValle, S.: Planning Algorithms. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  7. Radmanesh, M., Kumar, M., Guentert, P.H., Sarim, M.: Overview of path-planning and obstacle avoidance algorithms for UAVs: a comparative study. Unmanned Syst. 06(02), 95–118 (2018)

    Article  Google Scholar 

  8. Zhao, Y., Zheng, Z., Liu, Y.: Survey on computational-intelligence-based UAV path planning. Knowl. Based Syst. 158, 54–64 (2018)

    Article  Google Scholar 

  9. Barbeau, M., Garcia-Alfaro, J., Kranakis, E.: Geocaching-inspired resilient path planning for drone swarms. In: IEEE Conference on Computer Communications (IEEE INFOCOM 2019) Workshops, pp. 620–625, April 2019. https://doi.org/10.1109/INFCOMW.2019.8845318

  10. Chu, S., Narayanan, S., Kuo, C.J.: Environmental sound recognition with time-frequency audio features. IEEE Trans. Audio Speech Lang. Process. 17(6), 1142–1158 (2009)

    Google Scholar 

  11. Gehrig, M., Stumm, E., Hinzmann, T., Siegwart, R.: Visual place recognition with probabilistic voting. In: IEEE International Conference on Robotics and Automation (ICRA 2017), pp. 3192–3199 (2017)

    Google Scholar 

  12. Lowry, S., et al.: Visual place recognition: a survey. IEEE Trans. Robot. 32(1), 1–19 (2016)

    Google Scholar 

  13. Galvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)

    Google Scholar 

  14. Spaan, D., et al.: Thermal infrared imaging from drones offers a major advance for spider monkey surveys. Drones 3(2), 34 (2019)

    Google Scholar 

  15. Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72(4), 411–458 (2018)

    Article  MathSciNet  Google Scholar 

  16. Turpin, M., Michael, N., Kumar, V.: Capt: concurrent assignment and planning of trajectories for multiple robots. Int. J. Robot. Res. 33(1), 98–112 (2014)

    Article  Google Scholar 

  17. Rizqi, A.A.A., Cahyadi, A.I., Adji, T.B.: Path planning and formation control via potential function for UAV quadrotor. In: 2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS), pp. 165–170, June 2014

    Google Scholar 

  18. Maravall, D., de Lope, J., Fuentes Brea, J.P.: A vision-based dual anticipatory/reactive control architecture for indoor navigation of an unmanned aerial vehicle using visual topological maps. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS, vol. 7931, pp. 66–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38622-0_7

    Chapter  Google Scholar 

  19. Maravall, D., de Lope, J., Fuentes, J.: Navigation and self-semantic location of drones in indoor environments by combining the visual bug algorithm and entropy-based vision. Front. Neurorobot. 11, 46 (2017)

    Article  Google Scholar 

  20. Narendra, K., Thathachar, M.: Learning Automata: An Introduction. Courier Corporation (2012)

    Google Scholar 

  21. Park, S., Kim, H., Kim, K., Kim, H.: Drone formation algorithm on 3d space for a drone-based network infrastructure. In: IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, September 2016

    Google Scholar 

  22. Shrit, O., Martin, S., Alagha, K., Pujolle, G.: A new approach to realize drone swarm using ad-hoc network. In: 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 1–5, June 2017

    Google Scholar 

  23. Duan, H., Luo, Q., Shi, Y., Ma, G.: Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration. IEEE Comput. Intell. Mag. 8(3), 16–27 (2013)

    Google Scholar 

  24. Barbeau, M., Garcia-Alfaro, J., Kranakis, E., Santos, F.: Quality amplification of error prone navigation for swarms of micro aerial vehicles. In: 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2019)

    Google Scholar 

  25. Kranakis, E., Krizanc, D.: Searching with uncertainty. In: 6th International Colloquium on Structural Information & Communication Complexity, SIROCCO 1999, Lacanau-Ocean, France, 1–3 July 1999, pp. 194–203 (1999)

    Google Scholar 

  26. Kirousis, L.M., Kranakis, E., Krizanc, D., Stamatiou, Y.C.: Locating information with uncertainty in fully interconnected networks. In: Herlihy, M. (ed.) DISC 2000. LNCS, vol. 1914, pp. 283–296. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40026-5_19

    Chapter  Google Scholar 

  27. Farfan-Escobedo, J.D., Enciso-Rodas, L., Vargas-Muñoz, J.E.: Towards accurate building recognition using convolutional neural networks. In: 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1–4 (2017)

    Google Scholar 

  28. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  29. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, New York (2017)

    MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the European Commission (H2020 SPARTA project, under grant agreement 830892), and the SAMOVAR research laboratory of Télécom SudParis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Garcia-Alfaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbeau, M., Garcia-Alfaro, J., Kranakis, E. (2020). Geocaching-Inspired Navigation for Micro Aerial Vehicles with Fallible Place Recognition. In: Grieco, L.A., Boggia, G., Piro, G., Jararweh, Y., Campolo, C. (eds) Ad-Hoc, Mobile, and Wireless Networks. ADHOC-NOW 2020. Lecture Notes in Computer Science(), vol 12338. Springer, Cham. https://doi.org/10.1007/978-3-030-61746-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61746-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61745-5

  • Online ISBN: 978-3-030-61746-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics