Skip to main content

Bioconversion of Fruits and Vegetables Wastes into Value-Added Products

  • Chapter
  • First Online:
Sustainable Bioconversion of Waste to Value Added Products

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

The increase in human population with the increase in nutritional awareness for fruits and vegetables consumption is forcing toward higher production and supply of fruits and vegetables. However, some sorts of food processing steps are involved before human consumption which is essential for preserving the properties of those fruits and vegetables. During these processes and till reaching the consumers, many fruits and vegetables wastes are produced. Although the emphasis was given to produce less waste and reuse the products as much as possible, utilization of those wastes in bioprocessing and production of different value-added products were less emphasized. Thus, in this chapter, we describe the major value-added bioproducts produced from fruits and vegetables wastes such as bioactive compounds, phenolic compounds, enzymes, pigments, flavoring compounds and aroma, dietary fibers, organic acids, bioenergy, bioplastics, exopolysaccharides, single-cell protein, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adi, D. D, Oduro, I., & Simpson, B. K. (2019). Biological and microbial technologies for the transformation of fruits and vegetable wastes. In Simpson, B. K., Aryee, A. N. A., Toldrá, F. (eds.), Byproducts from agriculture and fisheries: Adding value for food, feed, pharma, and fuels (pp. 403–420). Wiley.

    Google Scholar 

  • Agarwal, M., Kumar, A., Gupta, R., & Upadhyaya, S. (2012). Extraction of polyphenol, flavonoid from Emblica officinalis, Citrus limon, Cucumis sativus and evaluation of their antioxidant activity. Oriental Journal of Chemistry, 28(2), 993–998.

    Article  CAS  Google Scholar 

  • Ahmed, I., Zia, M. A., Hussain, M. A., Akram, Z., Naveed, M. T., & Nowrouzi, A. (2016). Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. Journal of Radiation Research and Applied Sciences, 9(2), 148–154.

    CAS  Google Scholar 

  • Ajila, C. M., Aalami, M., Leelavathi, K., & Rao, U. J. S. P. (2010). Mango peels powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innovative Food Science and Emerging Technology, 11(1), 219–224.

    Article  CAS  Google Scholar 

  • Ajila, C. M., Brar, S., Verma, M., Tyagi, R. D., Godbout, S., & Valero, J. R. (2012). Bioprocessing of agro-byproducts to animal feed. Critical Reviews in Biotechnology, 32(4), 382–400.

    Article  CAS  Google Scholar 

  • Alokika, Singh B. (2019). Production, characteristics, and biotechnological applications of microbial xylanases. Applied Microbiology and Biotechnology, 103(21–22), 8763–8784.

    Article  CAS  Google Scholar 

  • Amado, I. R., Franco, D., Sánchez, M., Zapata, C., & Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165(2014), 290–299.

    Article  CAS  Google Scholar 

  • Amin, F., Bhatti, H. N., & Bilal, M. (2019). Recent advances in the production strategies of microbial pectinases—A review. International Journal of Biological Macromolecules, 122(2019), 1017–1026.

    Article  CAS  Google Scholar 

  • Awasthi, M. K., Chen, H., Awasthi, S. K., Liu, T., Wang, M., Duan, Y., & Li, J. (2019). Biological processing of solid waste and their global warming potential. In Kumar, S., Zhang, Z., Awasthi, M., & Li, R. (eds.), Biological processing of solid waste (pp. 111–128). CRC Press

    Google Scholar 

  • Ayala-Zavala, J. F., Vega-Vega, V., Rosas-Domínguez, C., Palafox-Carlos, H., Villa-Rodriguez, J. A., Siddiqui, M. W., et al. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research International, 44(7), 1866–1874.

    Article  CAS  Google Scholar 

  • Azeredo, H. M. (2009). Betalains: properties, sources, applications, and stability—A review. International Journal of Food Science & Technology, 44(12), 2365–2376.

    Article  CAS  Google Scholar 

  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191–203.

    Article  CAS  Google Scholar 

  • Batra, A., & Saxena, R. K. (2005). Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochemistry, 40(5), 1553–1557.

    Article  CAS  Google Scholar 

  • Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Mycrobial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56(3–4), 326–338.

    Article  CAS  Google Scholar 

  • Berger, R. G. (2007). Flavours and fragrances, chemistry, bioprocessing and sustainability. Springer Science and Business Media, p. 648.

    Google Scholar 

  • Birhanli, E., & Ye silada, O. (2013). The utilization of lignocellulosic wastes for laccase production under semisolid-state and submerged fermentation conditions. Turkish Journal of Biology, 37(4), 450–456.

    Article  CAS  Google Scholar 

  • Bocco, A., Cuvelier, M. E., Richard, H., & Berset, C. (1998). Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of Agriculture and Food Chemistry, 46(6), 2123–2129.

    Article  CAS  Google Scholar 

  • Caldeira, C., De Laurentiis, V., Corrado, S., van Holsteijn, F., & Sala, S. (2019). Quantification of food waste per product group along the food supply chain in the European Union: A mass flow analysis. Resources, Conservation & Recycling, 149(2019), 479–488.

    Article  Google Scholar 

  • Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Polylactic acid—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107(2016), 333–366.

    Article  CAS  Google Scholar 

  • CEC. (2017). Characterization and management of food loss and waste in North America (p. 289). Montreal, Canada: Commission for Environmental Cooperation.

    Google Scholar 

  • Chakdar, H., Kumar, M., Pandiyan, K., Singh, A., Nanjappan, K., Kashyap, P. L., Srivastava, A. K. (2016). Bacterial xylanases: Biology to biotechnology. 3 Biotech 6(2),150.

    Google Scholar 

  • Chauhan, P. S., Puri, N., Sharma, P., & Gupta, N. (2012). Mannanases: Microbial sources, production, properties and potential biotechnological applications. Applied Microbiology and Biotechnology, 93(5), 1817–1830.

    CAS  Google Scholar 

  • Chemat, F., Vian, M. A., Fabiano-Tixier, A. S., Nutizio, M., Jambrak, A. R., Munekata, P. E. S., et al. (2020). A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, 22(8), 2325–2353.

    Article  CAS  Google Scholar 

  • Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82(2), 211–220.

    CAS  Google Scholar 

  • Chin, K. L., & H’ng, P. S. (2013). A real story of bioethanol from biomass: Malaysia perspective. In M. D. Matovic (Ed.), Biomass now-sustainable growth and use (pp. 329–346). Croatia: InTech Publishers, Rijeka.

    Google Scholar 

  • Choonut, A., Saejong, M., & Sangkharak, K. (2014). The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia, 52(2014), 242–249.

    Article  CAS  Google Scholar 

  • Coman, V., Teleky, B. E., Mitrea, L., Martau, G. A., Szabo, K., Calinoiu, L. F., et al. (2020). Bioactive potential of fruit and vegetable wastes. Advances in Food and Nutrition Research, 91(2020), 157–225.

    CAS  Google Scholar 

  • Couto, S. R. (2008). Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions—Review. Biotechnology Journal: Healthcare Nutrition Technology, 3(7), 859–870.

    CAS  Google Scholar 

  • Couto, R. S., & Herrera, T. J. L. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24(5), 500–513.

    Google Scholar 

  • Das Mohapatra, P. K., Mondal, K. C., & Pati, B. R. (2006). Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6. Polish Journal of Microbiology, 55(4), 297–301.

    CAS  Google Scholar 

  • de Moura, I. G., de Sa, A. V., Abreu, A. S. L. M., & Machado, A. V. A. (2017). Bioplastics from agro-wastes for food packaging applications. In Food packaging (pp. 223–263). Academic Press.

    Google Scholar 

  • de Vuyst, L., de Vin, F., Vaningelgem, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal, 11(9), 687–707.

    Article  Google Scholar 

  • Dey, G., Sachan, A., Ghosh, S., & Mitra, A. (2003). Detection of major phenolic acids from dried mesocarpic husk of mature coconut by thin layer chromatography. Industrial Crops and Products, 18(2), 171–176.

    Article  CAS  Google Scholar 

  • Dhillon, S. S., Gill, R. K., Gill, S. S., & Singh, M. (2004). Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger. International Journal of Environmental Studies, 61(2), 199–210.

    CAS  Google Scholar 

  • Di Donato, P., Fiorentino, G., Anzelmo, G., Tommonaro, G., Nicolaus, B., & Poli, A. (2011). Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste & Biomass Valorization, 2(2), 103–111.

    Article  CAS  Google Scholar 

  • Dorta, E., & Sogi, D. S. (2017). Value added processing and utilization of pineapple by-products. In Handbook of pineapple technology: Production, postharvest science, processing and nutrition (pp. 196–220). Oxford: Wiley.

    Google Scholar 

  • dos Santos, T. C., Gomes, D. P. P., Bonomo, R. C. F., & Franco, M. (2012). Optimisation of solid-state fermentation of potato peel for the production of cellulolytic enzymes. Food Chemistry, 133(4), 1299–1304.

    Article  CAS  Google Scholar 

  • Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced Materials, 12(23), 1841–1846.

    Article  CAS  Google Scholar 

  • Elleuch, M., Bedigian, D., Besbes, S., Roiseux, O., Blecker, C., & Attia, H. (2011). Dietary fiber and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial application: A review. Food Chemistry, 124(2), 411–421.

    Article  CAS  Google Scholar 

  • Esparza, I., Jimenez-Moreno, N., Bimbela, F., Ancin-Azpilicueta, C., & Gandia, L. M. (2020). Review-fruit and vegetable waste management: Conventional and emerging approaches. Journal of Environmental Management, 265(2020), 110510.

    CAS  Google Scholar 

  • Esteban, J., & Ladero, M. (2018). Food waste as a source of value-added chemicals and materials: A biorefinery perspective. International Journal of Food Science & Technology, 53(5), 1095–1108.

    Article  CAS  Google Scholar 

  • FAO. (2011). Global food losses and food waste—Extent, causes and prevention. Rome

    Google Scholar 

  • FAO. (2016). Influencing food environments for healthy diets. http://www.fao.org/3/a-i6484e.pdf.

  • FAO. (2019). Global food losses and food waste-extent, causes and prevention. Rome: UN FAO.

    Google Scholar 

  • Follonier, S., Goyder, M. S., Silvestri, A. C., Crelier, S., Kalman, F., Riesen, R., et al. (2014). Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. International Journal of Biological Macromolecules, 71(2014), 42–52.

    Article  CAS  Google Scholar 

  • Ghimire, A., Frunzo, L., Pontoni, L., d’Antonio, G., Lens, P. N. L., Esposito, G., et al. (2015). Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. Journal of Environmental Management, 152(2015), 43–48.

    CAS  Google Scholar 

  • Gil-Chávez, G. J., Villa, J. A., Ayala-Zavala, J. F., Heredia, J. B., Sepulveda, D., Yahia, E. M., et al. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Comprehensive Reviews in Food Science and Food Safety, 12(1), 5–23.

    Article  CAS  Google Scholar 

  • Gomes, R. J., Borges, M. F., Rosa, M. F., Castro-Gómez, R. J. H., & Spinosa, W. A. (2018). Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technology and Biotechnology, 56(2), 139–151.

    CAS  Google Scholar 

  • González-Rábade, N., Badillo-Corona, J. A., Aranda-Barradas, J. S., & del Carmen, Oliver-Salvador M. (2011). Production of plant proteases in vivo and in vitro—A review. Biotechnology Advances, 29(6), 983–996.

    Article  CAS  Google Scholar 

  • Goubet, F., Misrahi, A., Park, S. K., Zhang, Z. N., Twell, D., & Dupree, P. (2003). AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiology, 131(2), 547–557.

    Article  CAS  Google Scholar 

  • Hadi, T. A., Banerjee, R., & Bhattacharyya, B. C. (1994). Optimization of tannase synthesis by a newly isolated Rhizopus oryzae. Bioprocess and Engineering, 11(6), 239–243.

    Article  CAS  Google Scholar 

  • Haminiuk, C. H. I., Maciel, G. M., Plata-Oviedo, M. S. V., & Peralta, R. M. (2012). Phenolic compounds in fruits—An overview. International Journal of Food Science & Technology, 47(10), 1–22.

    Google Scholar 

  • Ingale, S., Joshi, S. J., & Gupte, A. (2014). Production of bioethanol using agricultural waste: banana pseudo stem. Brazilian Journal of Microbiology, 45(3), 885–892.

    Article  CAS  Google Scholar 

  • Jaswir, I., Noviendri, D., Hasrini, R. F., & Octavianti, F. (2011). Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. Journal of Medicinal Plants, 5(33), 7119–7131.

    CAS  Google Scholar 

  • Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33(2014), 188–203.

    Article  CAS  Google Scholar 

  • Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, 10(10), 813–829.

    Article  CAS  Google Scholar 

  • Kandasamy, S., Muthusamy, G., Krishnan, S., Duraisamy, S., Thangasamy, S., Seralathan, K. K., & Chinnappan, S. (2016). Optimization of protease production from surface- modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech 6(2), 167.

    Google Scholar 

  • Kapdan, I. K., & Kargi, F. (2006). Biohydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582.

    Article  CAS  Google Scholar 

  • Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology, 77(3), 215–227.

    Article  CAS  Google Scholar 

  • Kieliszek, M., & Misiewicz, A. (2014). Microbial transglutaminase and its application in the food industry: A review. Folia Microbiologica, 59(3), 241–250.

    Article  CAS  Google Scholar 

  • Kittiphoom, S., & Sutasinee, S. (2013). Mango seed kernel oil and its physicochemical properties. The International Food Research Journal, 20(3), 1145–1149.

    CAS  Google Scholar 

  • Kodagoda, K. H. G. K., & Marapana, R. A. U. J. (2017). Utilization of fruit processing by-products for industrial applications: A review. International Journal of Food Sciences and Nutrition, 2(6), 24–30.

    Google Scholar 

  • Kong, X., Zhang, B., Hua, Y., Zhu, Y., Li, W., Wang, D., et al. (2019). Efficient l-lactic acid production from corncob residue using metabolically engineered thermo-tolerant yeast. Bioresource Technology, 273(2019), 220–230.

    Article  CAS  Google Scholar 

  • Kowalska, H., Czajkowska, K., Cichowska, J., & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology, 67(2017), 150–159.

    Article  CAS  Google Scholar 

  • Kubra, K. T., Ali, S., Walait, M., & Sundus, H. (2018). Potential applications of pectinases in food, agricultural and environmental sectors: Review. Journal of Pharmaceutical, Chemical and Biological Sciences, 6(2), 23–34.

    CAS  Google Scholar 

  • Kuhad, R. C., & Gupta, R. (2011). Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Research, 2011, 1–10.

    Article  CAS  Google Scholar 

  • Kumar, M., Singh, A., Beniwal, V., & Salar, R. K. (2016). Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach. AMB Express, 6(1), 46.

    Article  CAS  Google Scholar 

  • Kumar, K., Yadav, A. N., Kumar, V., Vyas, P., & Dhaliwal, H. S. (2017). Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresource Bioproducts, 4(1), 18.

    Article  Google Scholar 

  • Lee, Z. K., Li, S. L., Kuo, P. C., Chen, I. C., Tien, Y. M., Huang, Y. J., et al. (2010). Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste. International Journal of Hydrogen Energy, 35(24), 13458–13466.

    Article  CAS  Google Scholar 

  • Lee, S., Posarac, D., & Ellis, N. (2012). An experimental investigation of biodiesel synthesis from waste canola oil using supercritical methanol. Fuel, 91(1), 229–237.

    Article  CAS  Google Scholar 

  • Lekha, P. K., & Lonsane, B. K. (1997). Production and application of tannin acyl hydrolase: State of the art. Advances in Applied Microbiology, 44(1997), 215–260.

    Article  CAS  Google Scholar 

  • Leong, L. P., & Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76(1), 69–75.

    Article  CAS  Google Scholar 

  • Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.

    Article  CAS  Google Scholar 

  • Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254–260.

    Article  CAS  Google Scholar 

  • Lu, Y., Ding, Y., & Wu, Q. (2011). Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. Journal of Applied Phycology, 23(1), 115–121.

    Article  CAS  Google Scholar 

  • Lun, O. K., Wai, T. B., & Ling, L. S. (2014). Pineapple cannery waste as a potential substrate for microbial biotransformation to produce vanillic acid and vanillin. International Food Research Journal, 21(3), 953–958.

    CAS  Google Scholar 

  • Malav, A., Meena, S., Sharma, M., Sharma, M., & Dube, P. (2017). A critical review on single cell protein production using different substrates. International Journal of Development Research, 7(11), 16682–16687.

    Google Scholar 

  • Malgas, S., van Dyk, J. S., & Pletschke, B. I. (2015). A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World Journal of Microbiology and Biotechnology, 31(8), 1167–1175.

    CAS  Google Scholar 

  • Mann, J. I., & Cummings, J. H. (2009). Possible implications for health of the different definitions of dietary fibre. Nutrition, Metabolism & Cardiovascular Diseases, 19(3), 226–229.

    CAS  Google Scholar 

  • Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., Domínguez-González, J. M., Converti, A., & de Oliveira, R. P. S. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science and Technology, 30(1), 70–83.

    Article  CAS  Google Scholar 

  • Martins, S., Mussatto, S. I., Martinez-Avila, G., Montanez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation a review. Biotechnology Advances, 29(3), 365–373.

    Article  CAS  Google Scholar 

  • Max, B., Salgado, J. M., Rodríguez, N., Cortés, S., Converti, A., & Domínguez, J. M. (2010). Biotechnological production of citric acid. Brazilian Journal of Microbiology, 41(4), 862–875.

    Article  CAS  Google Scholar 

  • Metha, D., & Satyanarayana, T. (2016). Bacterial and archaeal α-Amylases: Diversity and Amelioration of the desirable characteristics for industrial applications. Frontiers in Microbiology, 7(2016), 1129.

    Google Scholar 

  • Mondal, A. K., Sengupta, S., Bhowal, J., & Bhattacharya, D. K. (2012). Utilization of fruits wastes in producing single cell protein. International Journal of Environmental Science and Technology, 1(5), 430–438.

    Google Scholar 

  • Muniraj, I. K., Uthandi, S. K., Hu, Z., Xiao, L., & Zhan, X. (2015). Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock. Environmental Technology Review, 4(1), 1–16.

    Article  CAS  Google Scholar 

  • Mushimiyimana, I., & Tallapragada, P. (2016). Bioethanol production from agro wastes by acid hydrolysis and fermentation process. Journal of Scientific and Industrial Research, 75(06), 383–388.

    CAS  Google Scholar 

  • Mushtaq, Q., Irfan, M., Tabssum, F., & Iqbal-Qazi, J. (2017). Potato peels: A potential food waste for amylase production. The Journal of Food Process Engineering, 40(4), e12512.

    Article  CAS  Google Scholar 

  • Najafpour, G. D. (2007). Downstream processing. Biochemical Engineering and Biotechnology, 332–341. Elsevier.

    Google Scholar 

  • Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501.

    Article  CAS  Google Scholar 

  • Nigam, P., & Singh, D. (1994). Solid-state (substrate) fermentation systems and their applications in biotechnology. Journal of Basic Microbiology, 34(6), 405–423.

    Article  CAS  Google Scholar 

  • Oelofse S H (2014) Food waste in South Africa: Understanding the magnitude, water footprint and cost. Alive2green

    Google Scholar 

  • Onilude, A. A., Fadaunsi, I. F., Garuba, E. O. (2012). Inulinase production by Saccharomyces sp. in solid state fermentation using wheat bran as substrate. Annals Microbiology, 62(2), 843–848.

    Google Scholar 

  • Palafox-Carlos, H., Ayala-Zavala, F., & González-Aguilar, G. A. (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science, 76(1), R6–R15.

    Article  CAS  Google Scholar 

  • Panda, S. K., Mishra, S. S., Kayitesi, E., & Ray, R. C. (2016). Microbial processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Environmental Research, 146(2016), 161–172.

    Article  CAS  Google Scholar 

  • Panesar, R., Kaur, S., & Panesar, P. S. (2015). Production of microbial pigments utilizing agro-industrial waste: A review. Current Opinion in Food Science, 1(2015), 70–76.

    Article  Google Scholar 

  • Parada, J., & Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. Journal of Food Science, 72(2), R21–R32.

    Article  CAS  Google Scholar 

  • Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., & Balasubramanian, R. (2015). Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 38(2015), 399–408.

    Article  CAS  Google Scholar 

  • Pickenhagen, W., Velluz, A., Passerat, J. P., & Ohloff, G. (1981). Estimation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone (Furaneol) in cultivated and wild strawberries, pineapples and mangoes. Journal of the Science of Food and Agriculture, 32(11), 1132–1134.

    Article  CAS  Google Scholar 

  • Prajapati, V. D., Jani, G. K., & Khanda, S. M. (2013). Pullulan: An exopolysaccharide and its various applications. Carbohydrate Polymers, 95(1), 540–549.

    Article  CAS  Google Scholar 

  • Prakasham, R. S., Rao, C. S., & Sarma, P. N. (2006). Green gram husk—An inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresource Technology, 97(13), 1449–1454.

    Google Scholar 

  • Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husain, T., Kamarudin, S. K., et al. (2016). Overview biohydrogen technologies and application in fuel cell technology. Renewable and Sustainable Energy Reviews, 66(2016), 137–162.

    Article  CAS  Google Scholar 

  • Ramirez-Arias, A. M., Giraldo, L., & Moreno-Pirajan, J. C. (2018). Biodiesel synthesis: Use of activated carbon as support of the catalyst. In Kumar, S., Sani, R. (eds.), Biorefinery of biomass to biofuels. Biofuel and biorefinery technologies, (pp. 117–152).

    Google Scholar 

  • Ravindran, R., & Jaiswal, A. K. (2016). Exploitation of food industry waste for high-value products. Trends in Biotechnology, 34(1), 58–69.

    Article  CAS  Google Scholar 

  • Raynal, J., Delgenks, J. P., & Moletta, R. (1998). Two phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process. Bioresource Technology, 65(1–2), 97–103.

    Article  CAS  Google Scholar 

  • Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., et al. (2019). Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 7(2019), 110.

    Google Scholar 

  • Reihani, S. S. F., & Khosravi-Darani, K. (2018). Influencing factors on single cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology, 37(2018), 34–40.

    Google Scholar 

  • Rispail, N., Morris, P., & Webb, K. J. (2005). Phenolic compounds: Extraction and analysis. In A. J. Marquez (Ed.), Lotus japonicus Handbook (pp. 349–354). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ritala, A., Hakkinen, S. T., Toivari, M., & Wiebe, M. G. (2017). Single cell protein- state of the art, industrial landscape and patents 2001–2016. Frontiers in Microbiology, 8, 2009.

    Google Scholar 

  • Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66(4), 401–436.

    Article  CAS  Google Scholar 

  • Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresource Bioproducts, 5(2018), 1–15.

    Google Scholar 

  • Sagar, N. A., Pareek, S., Sharma, S., Tahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Review of Food Science and Food Safety, 17(3), 512–531.

    Article  CAS  Google Scholar 

  • Said, A., Leila, A., Kaouther, D., & Sadia, B. (2014). Date wastes as substrate for the production of α-amylase and invertase. Iranian Journal of Biotechnology, 12(47), 41–49.

    Article  Google Scholar 

  • Sanders, J., Scott, E., Weusthuis, R., & Mooibroek, H. (2007). Bio-refinery as the bio-inspired process to bulk chemicals. 558 Macromolecular Bioscience, 7(2), 105–117.

    Google Scholar 

  • Sandhya, C., Sumantha, A., Szakacs, G., & Pandey, A. (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry, 40(8), 2689–2694.

    Article  CAS  Google Scholar 

  • Sarkis, J. R., Boussetta, N., Blouet, C., Tessaro, I. C., Marczak, L. D. F., & Vorobiev, E. (2015). Effect of pulsed electric fields and high voltage electrical discharge on polyphenol and protein extraction from sesame cake. Innovative Food Science and Emerging Technologies, 29(2015), 170–177.

    Article  CAS  Google Scholar 

  • Sauer, M., Porro, D., Mattanovich, D., & Branduardi, P. (2008). Microbial production of organic acids: expanding the markets. Trends in Biotechnology, 26(2), 100–108.

    Article  CAS  Google Scholar 

  • Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds recent developments. Trends in Food Science & Technology, 12(11), 401–413.

    CAS  Google Scholar 

  • Schieber, A., Hilt, P., Streker, P., Endreß, H. U., Rentschler, C., & Carle, R. (2003). A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innovative Food Science and Emerging Technology, 4(1), 99–107.

    Article  CAS  Google Scholar 

  • Selwal, M. K., Yadav, A., Selwal, K. K., Aggarwal, N. K., Gupta, R., & Gautam, S. K. (2011). Tannase production by Penicillium Atramentosum KM under SSF and its applications in wine clarification and tea cream solubilization. The Brazilian Journal of Microbiology, 42(1), 374–387.

    Article  CAS  Google Scholar 

  • Seyis, I., & Aksoz, N. (2005). Xylanase production from Trichoderma harzianum1073 D 3 with alternative carbon and nitrogen sources. Food Technology and Biotechnology, 43(1), 37–40.

    CAS  Google Scholar 

  • Shinagawa, F. B., Santana, F. C., Torres, L. R. O., & Mancini-Filho, J. (2015). Grape seed oil: A potential functional food. Food Science & Technology, 35(3), 399–406.

    Article  Google Scholar 

  • Singh, A., Kuila, A., Adak, S., Bishai, M., & Banerjee, R. (2012). Utilization of vegetable wastes for bioenergy generation. Agricultural Research, 1(3), 213–222.

    Article  CAS  Google Scholar 

  • Singh, R., Mittal, A., Kumar, M., & Mehta, P. K. (2016). Microbial proteases in commercial applications—Review. Journal of Pharmaceutical, Chemical and Biological Sciences, 4(3), 365–374.

    CAS  Google Scholar 

  • Singh, K., Kumar, T., Prince, Kumar V., Sharma, S., & Rani, J. (2019). A review on conversion of food waste and by-products into value added products. International Journal of Chemical Studies, 7(2), 2068–2073.

    CAS  Google Scholar 

  • Soliev, A. B., Hosokawa, K., & Enomoto, K. (2011). Bioactive pigments from marine bacteria: Applications and physiological roles. Journal of Evidence-Based Integrative Medicine, 2011, 1–17.

    Google Scholar 

  • Someya, S., Yoshiki, Y., & Okubo, K. (2002). Antioxidant compounds from bananas (Musa cavendish). Food Chemistry, 79(3), 351–354.

    Article  CAS  Google Scholar 

  • Stamenkovic, O. S., Velickovic, A. V., & Veljkovic, V. B. (2011). The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel, 90(11), 3141–3155.

    Article  CAS  Google Scholar 

  • Steinbüchel, A. (2001). Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromolecular Bioscience, 1(1), 1–24.

    Article  Google Scholar 

  • Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R., & Khanal, S. K. (2016). Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy, 98(2016), 197–202.

    Article  CAS  Google Scholar 

  • Tan, H., Chen, W., Liu, Q., Yang, G., & Li, K. (2018). Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress-and inflammation-activated signaling pathways. Frontiers in Immunology, 9(2018), 1504–1517.

    Article  CAS  Google Scholar 

  • Teles, A. S. C., Chavéz, D. W. H., Oliveira, R. A., Bon, E. P. S., Terzi, S. C., Souza, E. F., et al. (2019). Use of grape pomace for the production of hydrolytic enzymes by solid-state fermentation and recovery of its bioactive compounds. Food Research International, 120(2019), 441–448.

    Article  CAS  Google Scholar 

  • Tilay, A., Bule, M., Kishenkumar, J., & Annapure, U. (2008). Preparation of ferulic acid from agricultural wastes: Its improved extraction and purification. Journal of Agricultural and Food Chemistry, 56(17), 7644–7648.

    Article  CAS  Google Scholar 

  • Tran, C. T., & Mitchell, D. A. (1995). Pineapple waste-a novel substrate for citric acid production by solid-state fermentation. Biotechnology Letters, 17(10), 1107–1110.

    Article  CAS  Google Scholar 

  • Uçkun-Kiran, E., Trzcinski, A. P., Ng, W. J., & Liu, Y. (2014). Bioconversion of food waste to energy: A review. Fuel, 134(2014), 389–399.

    Article  CAS  Google Scholar 

  • Unakal, C., Kallur, R. I., & Kaliwal, B. B. (2012). Production of α-amylase using banana waste by Bacillus subtilis under solid state fermentation. European Journal of Experimental Biology, 2(2012), 1044–1052.

    CAS  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects: The 2019 Revision- Highlights.

    Google Scholar 

  • Vendruscolo, F., Albuquerque, P. M., Streit, F., Esposito, E., & Ninow, J. L. (2008). Apple pomace: A versatile substrate for biotechnological applications. Critical Reviews in Biotechnology, 28(1), 1–12.

    CAS  Google Scholar 

  • Venkata, S. G., & Venkata, M. S. (2010). Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresource Technology, 102(19), 9286–9290.

    Google Scholar 

  • Verma, N., & Kumar, V. (2020). Utilization of bottle gourd vegetable peel waste biomass in cellulase production by Trichoderma reesei and Neurospora crassa. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00727-9.

    Article  Google Scholar 

  • Wadhwa, M., Bakshi, M. P., Makkar, H. P. (2013). Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. In Makkar, H. P. S. (ed.) (vol. 4, pp. 1–67). RAP Publication.

    Google Scholar 

  • Wang, L. J. (2013). Production of bioenergy and bioproducts from food processing wastes: A review. Transactions of the ASABE, 56(1), 217–229.

    CAS  Google Scholar 

  • Wang, W., Bostic, T. R., & Gu, L. (2010). Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chemistry, 122(4), 1193–1198.

    Article  CAS  Google Scholar 

  • Weiner, R., Langille, S., & Quintero, E. (1995). Structure, function and immunochemistry of bacterial exopolysaccharides. Journal of Industrial Microbiology, 15(4), 339–346.

    Article  CAS  Google Scholar 

  • Wolfe, K. L., & Liu, R. H. (2003). Apple peels as a value-added food ingredient. Journal of Agricultural and Food Chemistry, 51(6), 1676–1683.

    Article  CAS  Google Scholar 

  • Yang, X., Choi, H. S., Park, C., & Kim, S. W. (2015). Current states and prospects of organic waste utilization for biorefineries. Renewable and Sustainable Energy Reviews, 49(2015), 335–349.

    Article  CAS  Google Scholar 

  • Yu, D., Shi, Y., Wang, Q., Zhang, X., & Zhao, Y. (2017). Application of methanol and sweet potato vine hydrolysate as enhancer of citric acid production by Aspergillus niger. Bioresource and Bioprocess, 4(1), 35.

    Article  Google Scholar 

  • Zhang, Z., O’Hara, I. M., Mundree, S., Gao, B., Ball, A. S., Zhu, N., et al. (2016). Biofuels from food processing wastes. Current Opinion in Biotechnology, 38(2016), 97–105.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrestha, S., Khatiwada, J.R., Sharma, H.K., Qin, W. (2021). Bioconversion of Fruits and Vegetables Wastes into Value-Added Products. In: Inamuddin, Khan, A. (eds) Sustainable Bioconversion of Waste to Value Added Products. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-61837-7_9

Download citation

Publish with us

Policies and ethics