Skip to main content

Maritime Data Analytics

  • Chapter
  • First Online:
Guide to Maritime Informatics

Abstract

The goal of mobility data analytics is to extract valuable knowledge out of a plethora of data sources that produce immense volumes of data. Focusing on the maritime domain, this relates to several challenging use-case scenarios, such as discovering valuable behavioural patterns of moving objects, identifying different types of activities in a region of interest, estimating fishing pressure or environmental fingerprint, etc. In this chapter, we focus on the exploration, preparation of data and application of several offline maritime data analytics techniques. Initially, we present several methods that assist an analyst to explore and gain insight of the data under analysis. Subsequently, we study several preprocessing techniques that aim to clean, transform, compress and partition long GPS traces into meaningful portions of movement. Finally, we overview some representative maritime knowledge discovery techniques, such as trajectory clustering, group behaviour identification, hot-spot analysis, frequent route or network discovery and data-driven predictive analytics methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Characteristic points of trajectories include their start and end points, the points of significant turns, and the points of significant stops (pauses in the movement). If a trajectory has long straight segments, it is also necessary to take representative points from these segments too.

References

  1. Adrienko, N., Adrienko, G.: Spatial generalization and aggregation of massive movement data. IEEE Trans. Visual. Comput. Graph. 17(2), 205–219 (2011)

    Article  Google Scholar 

  2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of ICDE, pp. 3–14 (1995)

    Google Scholar 

  3. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual Analytics of Movement. Springer Publishing Company, Incorporated (2013)

    Book  Google Scholar 

  4. Andrienko, G.L., Andrienko, N.V., Bak, P., Keim, D.A., Wrobel, S.: Visual Analytics of Movement. Springer, Berlin (2013)

    Google Scholar 

  5. Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD, pp. 49–60 (1999)

    Google Scholar 

  6. Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Comput. Geom. 41(3), 111–125 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cao, H., Mamoulis, N., Cheung, D.W.: Discovery of collocation episodes in spatiotemporal data. In: Proceedings of ICDM, pp. 823–827 (2006)

    Google Scholar 

  8. Chen, H.P., Dayal, U., Hsu, M.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of ICDE (2001)

    Google Scholar 

  9. Chen, L., Gao, Y., Fang, Z., Miao, X., Jensen, C.S., Guo, C.: Real-time distributed co-movement pattern detection on streaming trajectories. Proc. PVLDB 12(10), 1208–1220 (2019)

    Google Scholar 

  10. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: Proceedings of ICDE, pp. 900–911 (2011)

    Google Scholar 

  11. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)

    Article  Google Scholar 

  12. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of KDD, pp. 226–231 (1996)

    Google Scholar 

  13. Etienne, L., Ray, C., Camossi, E., Iphar, C.: Maritime data processing in relational databases. In: Artikis, A., Zissis, D. (eds.) Guide to Maritime Informatics (chap. 3). Springer, Berrlin (2021)

    Google Scholar 

  14. Fan, Q., Zhang, D., Wu, H., Tan, K.: A general and parallel platform for mining co-movement patterns over large-scale trajectories. Proc. PVLDB 10(4), 313–324 (2016)

    Google Scholar 

  15. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: Proceedings of ICDE, pp. 816–825 (2007)

    Google Scholar 

  16. Hong, L., Zheng, Y., Yung, D., Shang, J., Zou, L.: Detecting urban black holes based on human mobility data. In: Proceedings of SIGSPATIAL (2015)

    Google Scholar 

  17. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Proceedings of SSTD, pp. 364–381 (2005)

    Google Scholar 

  18. Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. Int. J. Geograph. Inf. Sci. 19(6), 639–668 (2005)

    Article  Google Scholar 

  19. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the ACM SIGMOD, pp. 593–604 (2007)

    Google Scholar 

  20. Lukasczyk, J., Maciejewski, R., Garth, C., Hagen, H.: Understanding hotspots: a topological visual analytics approach. In: Proceedings of SIGSPATIAL (2015)

    Google Scholar 

  21. Makrai, G.: Efficient method for large-scale spatio-temporal hotspot analysis. In: Proceedings of SIGSPATIAL (2016)

    Google Scholar 

  22. Moran, P.: Notes on continuous stochastic phenomena. Biometrika 37(1), 17–23 (1950)

    Article  MathSciNet  Google Scholar 

  23. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  24. Nikitopoulos, P., Paraskevopoulos, A., Doulkeridis, C., Pelekis, N., Theodoridis, Y.: Hot spot analysis over big trajectory data. In: Proceedings of IEEE BigData, pp. 761–770 (2018)

    Google Scholar 

  25. Nikitopoulos, P., Paraskevopoulos, A.I., Doulkeridis, C., Pelekis, N., Theodoridis, Y.: BigCAB: distributed hot spot analysis over big spatio-temporal data using Apache Spark. In: Proceedings of SIGSPATIAL (2016)

    Google Scholar 

  26. Ord, J.K., Getis, A.: Local spatial autocorrelation statistics: distributional issues and an application. Geograph. Anal. 27(4), 286–306 (1995)

    Article  Google Scholar 

  27. Panagiotakis, C., Kokinou, E., Vallianatos, F.: Automatic p-phase picking based on local-maxima distribution. IEEE Trans. Geosci. Remote Sens. 46(8), 2280–2287 (2008)

    Article  Google Scholar 

  28. Panagiotakis, C., Tziritas, G.: A speech/music discriminator based on RMS and zero-crossings. IEEE Trans. Multimedia 7(1), 155–166 (2005)

    Article  Google Scholar 

  29. Patroumpas, K.: Online mobility tracking against evolving maritime trajectories. In: Artikis, A., Zissis, D. (eds.) Guide to Maritime Informatics (Chap. 6). Springer, Berlin (2021)

    Google Scholar 

  30. Pelekis, N., Kopanakis, I., Kotsifakos, E.E., Frentzos, E., Theodoridis, Y.: Clustering uncertain trajectories. Knowl. Inf. Syst. 28(1), 117–147 (2011)

    Article  Google Scholar 

  31. Pelekis, N., Tampakis, P., Vodas, M., Doulkeridis, C., Theodoridis, Y.: On temporal-constrained sub-trajectory cluster analysis. Data Min. Knowl. Discov. 31(5), 1294–1330 (2017)

    Article  MathSciNet  Google Scholar 

  32. Pelekis, N., Tampakis, P., Vodas, M., Panagiotakis, C., Theodoridis, Y.: In-dbms sampling-based sub-trajectory clustering. In: Proceedings of EDBT, pp. 632–643 (2017)

    Google Scholar 

  33. Petrou, P., Nikitopoulos, P., Tampakis, P., Glenis, A., Koutroumanis, N., Santipantakis, G.M., Patroumpas, K., Vlachou, A., Georgiou, H.V., Chondrodima, E., Doulkeridis, C., Pelekis, N., Andrienko, G.L., Patterson, F., Fuchs, G., Theodoridis, Y., Vouros, G.A.: ARGO: a big data framework for online trajectory prediction. In: Proceedings of SSTD, pp. 194–197 (2019)

    Google Scholar 

  34. Petrou, P., Tampakis, P., Georgiou, H., Pelekis, N., Theodoridis, Y.: Online long-term trajectory prediction based on mined route patterns. In: MASTER workshop in conjuction with ECML/PKDD (2019)

    Google Scholar 

  35. Ray, C., Dreo, R., Camossi, E., Jousselme, A.L., Iphar, C.: Heterogeneous integrated dataset for maritime intelligence, surveillance, and reconnaissance. Data in Brief p. 104141 (2019)

    Google Scholar 

  36. Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M., Mouratidis, K., Sellis, T.K.: On-line discovery of hot motion paths. In: Proceedings of EDBT, pp. 392–403 (2008)

    Google Scholar 

  37. Tampakis, P., Doulkeridis, C., Pelekis, N., Theodoridis, Y.: Distributed subtrajectory join on massive datasets. ACM Trans. Spatial Algorithms Syst. 6(2), 8:1–8:29 (2020)

    Google Scholar 

  38. Tampakis, P., Pelekis, N., Andrienko, N., Andrienko, G., Fuchs, G., Theodoridis, Y.: Time-aware sub-trajectory clustering in hermes@postgresql. In: 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France, April 16–19, 2018, pp. 1581–1584 (2018)

    Google Scholar 

  39. Tampakis, P., Pelekis, N., Doulkeridis, C., Theodoridis, Y.: Scalable distributed subtrajectory clustering. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 950–959 (2019)

    Google Scholar 

  40. Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: Myway: Location prediction via mobility profiling. Inf. Syst. 64, 350–367 (2017)

    Article  Google Scholar 

  41. Yan, Z., Parent, C., Spaccapietra, S., Chakraborty, D.: A hybrid model and computing platform for spatio-semantic trajectories. In: Proceedings of ESWC, pp. 60–75 (2010)

    Google Scholar 

  42. Zheng, Y.: Trajectory data mining: An overview. ACM TIST 6(3), 29:1–29:41 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Tampakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tampakis, P., Sideridis, S., Nikitopoulos, P., Pelekis, N., Theodoridis, Y. (2021). Maritime Data Analytics. In: Artikis, A., Zissis, D. (eds) Guide to Maritime Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-61852-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61852-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61851-3

  • Online ISBN: 978-3-030-61852-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics