Skip to main content

CXCL8 Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1302))

Abstract

The tumor microenvironment represents a dynamic and complex cellular network involving intricate communications between the tumor and highly heterogeneous groups of cells, including tumor-supporting immune and inflammatory cells, cancer-associated fibroblasts, endothelial cells, tumor-associated macrophages, adipose cells, and pericytes. Associated with a variety of growth factors, chemokines, cytokines, and other signaling molecules, the interaction between the tumor microenvironment and the tumor cells empowers aggressiveness of tumor by enhancing its survivability. CXCL8 (also known as Interleukin 8), a multifunctional proinflammatory chemokine that was initially classified as a neutrophil chemoattractant, recently has been found to be a key contributor in tumorigenesis. The upregulation of CXCL8 at the tumor invasion front in several human cancers suggests its interplay between the tumor and its microenvironment rendering tumor progression by enhancing angiogenesis, tumor genetic diversity, survival, proliferation, immune escape, metastasis, and multidrug resistance. The autocrine and paracrine modulation of CXCL8 via the chemokine receptors CXCR1/2 promotes several intracellular signaling cascades that fosters tumor-associated inflammation, reprogramming, epithelial-mesenchymal transition, and neovascularization. Hence, decrypting the regulatory/signaling cascades of CXCL8 and its downstream effects may harbor prognostic clinical prospects of a tumor microenvironment-oriented cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribatti D, De Falco G, Nico B, Ria R, Crivellato E, Vacca A (2003) In vivo time-course of the angiogenic response induced by multiple myeloma plasma cells in the chick embryo chorioallantoic membrane. J Anat 203(3):323–328. https://doi.org/10.1046/j.1469-7580.2003.00220.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dhawan P, Richmond A (2002) Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72(1):9–18

    CAS  PubMed  Google Scholar 

  3. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550. https://doi.org/10.1038/nrc1388

    Article  CAS  PubMed  Google Scholar 

  4. Zlotnik A, Yoshie O (2000) Chemokines. Immunity 12(2):121–127. https://doi.org/10.1016/s1074-7613(00)80165-x

    Article  CAS  PubMed  Google Scholar 

  5. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2):108–115. https://doi.org/10.1038/84209

    Article  CAS  PubMed  Google Scholar 

  6. Waugh DJJ, Wilson C (2008) The Interleukin-8 pathway in Cancer. Clin Cancer Res 14(21):6735–6741. https://doi.org/10.1158/1078-0432.ccr-07-4843

    Article  CAS  PubMed  Google Scholar 

  7. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology 7(2):122–133. https://doi.org/10.1215/s1152851704001061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu YM, Woll PJ (2005) Mitogenic effects of interleukin-8/CXCL8 on cancer cells. Future Oncol 1(5):699–704

    Article  CAS  PubMed  Google Scholar 

  9. Azenshtein E, Meshel T, Shina S, Barak N, Keydar I, Ben-Baruch A (2005) The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Lett 217(1):73–86

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322. https://doi.org/10.1016/j.ccr.2012

    Article  CAS  PubMed  Google Scholar 

  13. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by Tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252. https://doi.org/10.1038/nrc2618

    Article  CAS  PubMed  Google Scholar 

  17. Räsänen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316:2713–2722

    Article  PubMed  Google Scholar 

  18. Lu C, Vickers MF, Kerbel RS (1992) Interleukin 6: a fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression. Proc Natl Acad Sci U S A 89:9215–9219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, Travali S, Spandidos DA, Libra M (2012) The tumor microenvironment in hepatocellular carcinoma (review). Int J Oncol 40:1733–1747

    CAS  PubMed  Google Scholar 

  21. Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB (2002) PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277:5484–5489

    Article  CAS  PubMed  Google Scholar 

  22. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    Article  CAS  PubMed  Google Scholar 

  23. Yoshiji H, Gomez DE, Shibuya M, Thorgeirsson UP (1996) Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res 56:2013–2016

    CAS  PubMed  Google Scholar 

  24. Volm M, Koomägi R, Mattern J (1997) Prognostic value of vascular endothelial growth factor and its receptor FLT-1 in squamous cell lung cancer. Int J Cancer 74:64–68

    Article  CAS  PubMed  Google Scholar 

  25. Olson TA, Mohanraj D, Carson LF, Ramakrishnan S (1994) Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res 54:276–280

    CAS  PubMed  Google Scholar 

  26. Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51. https://doi.org/10.3389/fnmol.2011.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  CAS  PubMed  Google Scholar 

  29. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506

    Article  CAS  PubMed  Google Scholar 

  30. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322

    Article  PubMed  Google Scholar 

  31. Ben-Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16(1):38–52

    Article  CAS  PubMed  Google Scholar 

  32. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29(3):233–240

    Article  CAS  PubMed  Google Scholar 

  33. Mukaida N, Sasaki S, Baba T (2014) Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediat Inflamm 2014:1–15. https://doi.org/10.1155/2014/170381

    Article  CAS  Google Scholar 

  34. O’Hayre M, Salanga CL, Handel TM, Allen SJ (2008) Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J 409(3):635–649. https://doi.org/10.1042/bj20071493

    Article  PubMed  Google Scholar 

  35. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T et al (2016) The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 31:61–71. https://doi.org/10.1016/j.cytogfr.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee YS, Choi I, Ning Y, Kim NY, Khatchadourian V, Yang D et al (2012) Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer 106(11):1833–1841. https://doi.org/10.1038/bjc.2012.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar A, Cherukumilli M, Mahmoudpour SH, Brand K, Bandapalli OR (2018) ShRNA-mediated knock-down of CXCL8 inhibits tumor growth in colorectal liver metastasis. Biochem Biophys Res Commun 500(3):731–737. https://doi.org/10.1016/j.bbrc.2018.04.144

    Article  CAS  PubMed  Google Scholar 

  38. Wang L-H, Cheng G, Park S, Shu S, He L, Kong W et al (2008) Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr Cancer Drug Targets 8(1):2–6. https://doi.org/10.2174/156800908783497159

    Article  PubMed  Google Scholar 

  39. Knall C, Young S, Nick JA, Buhl AM, Worthen GS, Johnson GL (1996) Interleukin-8 regulation of the Ras/Raf/Mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem 271(5):2832–2838. https://doi.org/10.1074/jbc.271.5.2832

    Article  CAS  PubMed  Google Scholar 

  40. MacManus CF, Pettigrew J, Seaton A, Wilson C, Maxwell PJ, Berlingeri S et al (2007) Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate Cancer cells. Mol Cancer Res 5(7):737–748. https://doi.org/10.1158/1541-7786.mcr-07-0032

    Article  CAS  PubMed  Google Scholar 

  41. Luppi F, Longo AM, de Boer WI, Rabe KF, Hiemstra PS (2007) Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation. Lung Cancer 56(1):25–33. https://doi.org/10.1016/j.lungcan.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  42. Venkatakrishnan G, Salgia R, Groopman JE (2000) Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells. J Biol Chem 275(10):6868–6875. https://doi.org/10.1074/jbc.275.10.6868

    Article  CAS  PubMed  Google Scholar 

  43. Lang K, Niggemann B, Zanker KS, Entschladen F (2002) Signal processing in migrating T24 human bladder carcinoma cells: role of the autocrine interleukin-8 loop. Int J Cancer 99(5):673–680. https://doi.org/10.1002/ijc.10424

    Article  CAS  PubMed  Google Scholar 

  44. Knall C, Worthen GS, Johnson GL (1997) Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci 94(7):3052–3057. https://doi.org/10.1073/pnas.94.7.3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pópulo H, Lopes JM, Soares P (2012) The mTOR signalling pathway in human cancer. Int J Mol Sci 13(2):1886–1918. https://doi.org/10.3390/ijms13021886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in Cancer. Annu Rev Pathol Mech Dis 4(1):127–150. https://doi.org/10.1146/annurev.pathol.4.110807.092311

    Article  CAS  Google Scholar 

  47. Nakatani K, Thompson DA, Barthel A, Sakaue H, Liu W, Weigel RJ, Roth RA (1999) Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem 274(31):21528–21532. https://doi.org/10.1074/jbc.274.31.21528

    Article  CAS  PubMed  Google Scholar 

  48. Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6(11):827–837. https://doi.org/10.1038/nrm1743

    Article  CAS  PubMed  Google Scholar 

  49. Roskoski R (2018) Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol Res 135:239–258. https://doi.org/10.1016/j.phrs.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  50. Dunn KL, Espino PS, Drobic B, He S, Davie JR (2005) The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83(1):1–14. https://doi.org/10.1139/o04-121

    Article  CAS  PubMed  Google Scholar 

  51. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24(1):21–44. https://doi.org/10.1080/02699050500284218

    Article  CAS  PubMed  Google Scholar 

  52. De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16(sup2):S17–S27. https://doi.org/10.1517/14728222.2011.639361

    Article  CAS  PubMed  Google Scholar 

  53. Weston C (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12(1):14–21. https://doi.org/10.1016/s0959-437x(01)00258-1

    Article  CAS  PubMed  Google Scholar 

  54. Kim KS, Rajagopal V, Gonsalves C, Johnson C, Kalra VK (2006) A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. J Immunol 177(10):7211–7224. https://doi.org/10.4049/jimmunol.177.10.7211

    Article  CAS  PubMed  Google Scholar 

  55. Shi Q, Le X, Abbruzzese JL, Wang B, Mujaida N, Matsushima K et al (1999) Cooperation between transcription factor AP-1 and NF-kappa B in the induction of Interleukin-8 in human pancreatic adenocarcinoma cells by hypoxia. J Interf Cytokine Res 19(12):1363–1371. https://doi.org/10.1089/107999099312821

    Article  CAS  Google Scholar 

  56. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15(1):11–18. https://doi.org/10.1038/sj.cr.7290257

    Article  CAS  PubMed  Google Scholar 

  57. Wagner EF, Nebreda ÁR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549. https://doi.org/10.1038/nrc2694

    Article  CAS  PubMed  Google Scholar 

  58. Jaffe AB, Hall A (2005) RHO GTPASES: biochemistry and biology. Annu Rev Cell Dev Biol 21(1):247–269. https://doi.org/10.1146/annurev.cellbio.21.020604.150721

    Article  CAS  PubMed  Google Scholar 

  59. Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41(1):31–40. https://doi.org/10.1016/0092-8674(85)90058-3

    Article  CAS  PubMed  Google Scholar 

  60. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3):389–399. https://doi.org/10.1016/0092-8674(92)90163-7

    Article  CAS  PubMed  Google Scholar 

  61. Tang Y (2008) Role of Rho GTPases in breast cancer. Front Biosci 13(13):759. https://doi.org/10.2741/2718

    Article  CAS  PubMed  Google Scholar 

  62. Hall A (2012) Rho family GTPases. Biochem Soc Trans 40(6):1378–1382. https://doi.org/10.1042/bst20120103

    Article  CAS  PubMed  Google Scholar 

  63. Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17(8):496–510. https://doi.org/10.1038/nrm.2016.67

    Article  CAS  PubMed  Google Scholar 

  64. Cook DR, Rossman KL, Der CJ (2013) Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 33(31):4021–4035. https://doi.org/10.1038/onc.2013.362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Del Pulgar TG, Benitah SA, Valerón PF, Espina C, Lacal JC (2005) Rho GTPase expression in tumourigenesis: evidence for a significant link. BioEssays 27(6):602–613. https://doi.org/10.1002/bies.20238

    Article  CAS  Google Scholar 

  66. Schraufstatter IU, Chung J, Burger M (2001) IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Phys Lung Cell Mol Phys 280(6):L1094–L1103. https://doi.org/10.1152/ajplung.2001.280.6.l1094

    Article  CAS  Google Scholar 

  67. Ha H, Debnath B, Neamati N (2017) Role of the CXCL8-CXCR1/2 Axis in cancer and inflammatory diseases. Theranostics 7(6):1543–1588. https://doi.org/10.7150/thno.15625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stengel K, Zheng Y (2011) Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal 23(9):1415–1423. https://doi.org/10.1016/j.cellsig.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535. https://doi.org/10.1038/35020106

    Article  CAS  PubMed  Google Scholar 

  70. McHardy LM (2005) Strongylophorine-26, a Rho-dependent inhibitor of tumor cell invasion that reduces actin stress fibers and induces nonpolarized lamellipodial extensions. Mol Cancer Ther 4(5):772–778. https://doi.org/10.1158/1535-7163.mct-04-0310

    Article  CAS  PubMed  Google Scholar 

  71. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  72. Saitoh M (2018) Involvement of partial EMT in cancer progression. J Biochem. https://doi.org/10.1093/jb/mvy047

  73. Nieto MA (2017) Context-specific roles of EMT programmes in cancer cell dissemination. Nat Cell Biol 19(5):416–418. https://doi.org/10.1038/ncb3520

    Article  CAS  PubMed  Google Scholar 

  74. Furuya S, Endo K, Takahashi A, Miyazawa K, Saitoh M (2017) Snail suppresses cellular senescence and promotes fibroblast-led cancer cell invasion. FEBS Open Bio 7(10):1586–1597. https://doi.org/10.1002/2211-5463.12300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen T, Yang Z, Cheng X, Xiao Y, Yu K, Cai X, Xia C, Li Y (2017) CXCL8 induces epithelial-mesenchymal transition in colon cancer cells via the PI3K/Akt/NF-κB signaling pathway. Oncol Rep 37(4):2095–2100. https://doi.org/10.3892/or.2017.5453

    Article  CAS  PubMed  Google Scholar 

  76. David J, Dominguez C, Hamilton D, Palena C (2016) The IL-8/IL-8R Axis: a double agent in tumor immune resistance. Vaccine 4(3):22. https://doi.org/10.3390/vaccines4030022

    Article  CAS  Google Scholar 

  77. Cheng X-S, Li Y-F, Tan J, Sun B, Xiao Y-C, Fang X-B et al (2014) CCL20 and CXCL8 synergize to promote progression and poor survival outcome in patients with colorectal cancer by collaborative induction of the epithelial–mesenchymal transition. Cancer Lett 348(1–2):77–87. https://doi.org/10.1016/j.canlet.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  78. Li X-J, Peng L-X, Shao J-Y, Lu W-H, Zhang J-X, Chen S et al (2012) As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial–mesenchymal transition and activation of AKT signaling. Carcinogenesis 33(7):1302–1309. https://doi.org/10.1093/carcin/bgs181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang L, Tang C, Cao H, Li K, Pang X, Zhong L et al (2015) Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol Ther 16(8):1220–1230. https://doi.org/10.1080/15384047.2015.1056409

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kut C, Mac Gabhann F, Popel AS (2007) Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer 97(7):978–985. https://doi.org/10.1038/sj.bjc.6603923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Birbrair A, Zhang T, Wang Z-M, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Phys Cell Phys 307(1):C25–C38. https://doi.org/10.1152/ajpcell.00084.2014

    Article  CAS  Google Scholar 

  82. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J et al (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270(45):27348–27357. https://doi.org/10.1074/jbc.270.45.27348

    Article  CAS  PubMed  Google Scholar 

  83. Hu DE, Hori Y, Fan T-PD (1993) Interleukln-8 stimulates angiogenesis in rats. Inflammation 17(2):135–143. https://doi.org/10.1007/bf00916100

    Article  CAS  PubMed  Google Scholar 

  84. Koch A, Polverini P, Kunkel S, Harlow L, DiPietro L, Elner V et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801. https://doi.org/10.1126/science.1281554

    Article  CAS  PubMed  Google Scholar 

  85. Kuniyasu H, Yasui W, Shinohara H, Yano S, Ellis LM, Wilson MR et al (2000) Induction of angiogenesis by hyperplastic colonic mucosa adjacent to colon cancer. Am J Pathol 157(5):1523–1535. https://doi.org/10.1016/s0002-9440(10)64790-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fox SH, Whalen GF, Sanders MM, Burleson JA, Jennings K, Kurtzman S, Kreutzer D (1998) Angiogenesis in normal tissue adjacent to colon cancer. J Surg Oncol 69(4):230–234. https://doi.org/10.1002/(sici)1096-9098(199812)69:4<230::aid-jso7>3.0.co;2-q

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obul Reddy Bandapalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asokan, S., Bandapalli, O.R. (2021). CXCL8 Signaling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1302. Springer, Cham. https://doi.org/10.1007/978-3-030-62658-7_3

Download citation

Publish with us

Policies and ethics