Skip to main content

Synthesis of Nanoclay Composite Material

  • Chapter
  • First Online:
Contemporary Nanomaterials in Material Engineering Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The immense research interest in clay sciences is driven by the easy availability in nature, extraordinary properties, wide range of applicability, cheaper and less toxicity. Clay minerals have a huge potential to explore and/or manipulate application specific physical properties in the lab. Nano-structured clay broadly can be classified as aggregated nano-clay, isolated nano-clay particles (tactoid), intercalated clay and exfoliated clay. Clay shows the properties related to nano-structuring to its fullest when exfoliated and many interesting physical, morphological characteristic and improved properties are observed. Clay based nano-composites materials provide significant properties improvements even at low nanoparticles content. Effort is made to strengthen the understanding on effect of size, shape and the chemical compositions to properties relations. The optimization of adsorption properties, swelling behavior, rheological properties optimization, nano-sized clay development and design of polymer–clay composites development opens the new prospect of research and application of clay minerals. To obtain a uniform distribution with strong linking between polymer to particles remains a critical challenge in order to obtain properties like flame retardant, mechanical, barrier and thermal properties, etc. This chapter focuses more in-depth on the synthesis and properties of clay-polymer composite. Processing of Clay-polymer nano-composites such as conventional solution blending, melt blending, in situ polymerization and the use of ultrasounds in enhancement of nanoparticles dispersion has been discussed. To reach the optimal properties that is required for specific applications, selection of composition, clay microstructure and processing is the key and has been elaborated in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barton, C.D.: Clay minerals. In: Rattan Lal (ed.) Encyclopedia of Soil Science, pp 187–192. Marcel Dekker Publication, New York (2002)

    Google Scholar 

  2. Aboudi Mana, S.C., Hanafiah, M.M., Chowdhury, A.J.K.: Environmental characteristics of clay and clay-based minerals. Geol. Ecol. Landscapes 1(3), 155–161 (2017)

    Google Scholar 

  3. Guggenheim, S., Martin, R.T.: Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner. 43(2), 255–256 (1995)

    Article  Google Scholar 

  4. William, F.B. (ed.): Clay mineralogy and clay chemistry. In: Soil and Environmental Chemistry, pp. 85–116. Elsevier (2012)

    Google Scholar 

  5. Martin, R.T., Bailey, S.W., Eberl, D.D., Fanning, D.S., Guggenheim, S., Kodama, H., Pevear, D.R., Środoń, J., Wicks, F.J.: Report of the clay minerals society nomenclature committee: revised classification of clay materials. Clays Clay Miner. 39, 333–335 (1991)

    Article  Google Scholar 

  6. Tournassat, C., Steefel, C.I., Bourg, I.C., Bergaya, F.: Surface properties of clay minerals. In: Tournassat, C., Steefel, C.I., Bourg, I.C., Bergaya F (eds.) Developments in Clay Science, pp. 5–31. Elsevier (2015)

    Google Scholar 

  7. Schulze, D.G.: Clay minerals. In: Hillel, D (ed.) Encyclopedia of Soils in the Environment, vol. 1, pp. 246–254. Elsevier/Academic Press, Boston

    Google Scholar 

  8. Nanomaterials definition matters. Nat. Nanotechnol. 14(3), 193–193 (2019)

    Google Scholar 

  9. Yaya, A., Agyei-Tuffour, B., Dodoo-Arhin, D., Nyankson, E., Annan, E., Konadu, D.S., Sinayobye, E., Baryeh, E.A., Ewels, C.P.: Layered nanomaterials-a review. Global J. Eng. Des. Tech. 1, 32–41 (2012)

    Google Scholar 

  10. Mousavi, S.M., Hashemi, S.A., Salahi, S., Hosseini, M., Ali, A.M., Babapoor, A.: Development of clay nanoparticles toward bio and medical applications. In: Zoveidavianpoor, M. (ed.) Current topics in the utilization of clay in industrial and medical applications, p 807. Intech Open (2018)

    Google Scholar 

  11. Guggenheim, S., Krekeler, M.P.S.: The structures and microtextures of the palygorskite–sepiolite group minerals. In: Galàn, E., and Singer, A. (eds.) Developments in Clay Science, pp. 3–32. Elsevier (2011)

    Google Scholar 

  12. Wang, W., Wang, A.: Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Appl. Clay Sci. 119, 18–30 (2016)

    Article  Google Scholar 

  13. Xu, J., Wang, W., Wang, A.: A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder Technol. 249, 157–162 (2013)

    Article  Google Scholar 

  14. De Lima, J. A., Camilo, F. F., Faez, R. and Cruz S. A., A new approch to sepiolite dispersion by treatment with ionic liquids, Applied Clay Science, Elsevier, 2017, 234–240.

    Google Scholar 

  15. Massaro, M., Lazzara, G., Milioto, S., Noto, R., Riela, S.: Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J. Mater. Chem. B 5(16), 2867–2882 (2017)

    Article  Google Scholar 

  16. Yuan, P., Southon, P.D., Liu, Z., Green, M.E.R., Hook, J.M., Antill, S.J., Kepert, C.J.: Functionalization of halloysite clay nanotubes by grafting with γ-Aminopropyltriethoxysilane. J. Phys. Chem. C 112(40), 15742–15751 (2008)

    Article  Google Scholar 

  17. Lvov, Y., Abdullayev, E.: Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog. Polym. Sci. 38(10), 1690–1719 (2013)

    Article  Google Scholar 

  18. Pasbakhsh, P., Churchman, G.J., Keeling, J.L.: Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 74, 47–57 (2013)

    Article  Google Scholar 

  19. Bauluz, B.: Halloysite and kaolinite two clay minerals with geological and technological importance. Rev. Real Academia De Ciencias Zaragoza 70, 1–33 (2015)

    Google Scholar 

  20. Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., Delvaux, B.: Halloysite clay minerals—a review. Clay Miner. 40(4), 383–426 (2005)

    Article  Google Scholar 

  21. Bursill, L.A., Peng, J.L., Bourgeois, L.N.: Imogolite: An aluminosilicate nanotube material. Philos. Mag. A 80(1), 105–117 (2000)

    Article  Google Scholar 

  22. Paineau, E.: Imogolite nanotubes: a flexible nanoplatform with multipurpose applications. Appl. Sci. 8(10), 1921 (2018)

    Article  Google Scholar 

  23. Starodoubtsev, S.G., Lavrentyeva, E.K., Khokhlov, A.R., Allegra, G., Famulari, A., Meille, S.V.: Mechanism of smectic arrangement of montmorillonite and bentonite clay platelets incorporated in gels of Poly(Acrylamide) induced by the interaction with cationic surfactants. Langmuir 22(1), 369–374 (2006)

    Google Scholar 

  24. Usuki, A., Hasegawa, N., Kadoura, H., Okamoto, T.: Three-dimensional observation of structure and morphology in Nylon-6/Clay nanocomposite. Nano Lett. 1(5), 271–272 (2001)

    Article  Google Scholar 

  25. Wang, Y.C., Huang, T.K., Tung, S.H., Wu, T.M., Lin, J.J.: Self-assembled clay films with a platelet–void multilayered nanostructure and flame-blocking properties. Sci. Rep. 3, 2621 (2013)

    Article  Google Scholar 

  26. Hull, D., Clyne, T.W.: An introduction to composite materials. Cambridge Solid State Science Series. Cambridge University Press (1996)

    Google Scholar 

  27. DeArmitt, C., Hancock, M.: Particulate-filled polymer composites, Rothon, R.N. (ed.) pp. 357–424 (2003)

    Google Scholar 

  28. Wang, W., Wang, A.: Nanoscale clay minerals for functional ecomaterials: fabrication, applications, and future trends. (2018)

    Google Scholar 

  29. Arora, A., Padua, G.W.: Nanocomposites in food packaging. J. Food Sci. 75(1), R43–R49 (2010)

    Article  Google Scholar 

  30. Chen, B., Evans, J.R.G., Greenwell, H.C., Boulet, P., Coveney, P.V., Bowden, A.A., Whiting, A.: A critical appraisal of polymer–clay nanocomposites. Chem. Soc. Rev. 37(3), 568–594 (2008)

    Article  Google Scholar 

  31. Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003)

    Article  Google Scholar 

  32. Cui, Y., Kumar, S., Konac, B.R., Houckec, D.V.: Gas barrier properties of polymer/clay nanocomposites. RSC Adv. 5(78), 63669–63690 (2015)

    Article  Google Scholar 

  33. Monvisade, P., Siriphannon, P.: Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption. Appl. Clay Sci. 42(3), 427–431 (2009)

    Article  Google Scholar 

  34. Sunil, B.H., Pushpalatha, M., Basavaprasad, V.M., Huvanna, T.P.: Modified nano-clay formulation and their application. Int. J. Chem. Stud. 6(4), 705–710 (2018)

    Google Scholar 

  35. Wang, W., Wang, F., Kang, Y., Wang, A.: Enhanced adsorptive removal of Methylene Blue from aqueous solution by alkali-activated palygorskite. Water Air Soil Pollut. 226(3), 83 (2015)

    Article  Google Scholar 

  36. Irani, M., Fan, M., Ismail, H., Tuwati, A., Dutcher, B., Russel, A.G.: Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption. Nano Energy 11, 235–246 (2015)

    Article  Google Scholar 

  37. Jlassi, K., Krupa, I., Chehimi, M.M.: Overview: clay preparation, properties, modification. In: Jlassi, K., Chehimi, M.M., Thomas, S., (eds.) Clay-Polymer Nanocomposites, pp. 1–28. Elsevier (2017)

    Google Scholar 

  38. Fukushima, Y., Inagaki, S.: Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J. Incl. Phenom. 5(4), 473–482 (1987)

    Article  Google Scholar 

  39. Bruce, A.N., Lieber, D., Hua, I., Howarter, J.A.: Rational interface design of epoxy–organoclay nanocomposites: role of structure-property relationship for silane modifiers. J. Colloid Interface Sci. 419, 73–78 (2014)

    Article  Google Scholar 

  40. Bayram, I., Oral, A., Sirin, K.: Synthesis of poly(cyclohexene oxide)-montmorillonite nanocomposite via in situ photoinitiated cationic polymerization with bifunctional clay. J. Chem. 2013, 6 (2013)

    Article  Google Scholar 

  41. Salmi, Z., Benzarti, K., Chehimi, M.M.: Diazonium cation-exchanged clay: an efficient, unfrequented route for making clay/polymer nanocomposites. Langmuir 29(44), 13323–13328 (2013)

    Article  Google Scholar 

  42. Othmani-Assmann, H., Benna-Zayani, N., Geiger, S., Fraisse, B., Kbir-Ariguib, N., Trabelsi-Ayadi, M., Ghermani, N.E., Grossiord, J.L.: Physico-chemical characterizations of Tunisian organophilic bentonites. J. Phys. Chem. C 111(29), 10869–10877 (2007)

    Article  Google Scholar 

  43. Di Gianni, A., Amerio, E., Monticelli, O., Bongiovanni, R.: Preparation of polymer/clay mineral nanocomposites via dispersion of silylated montmorillonite in a UV curable epoxy matrix. Appl. Clay Sci. 42(1), 116–124 (2008)

    Article  Google Scholar 

  44. Jlassi, K., Mekki, I., Benna-Zayani, M., Sigh, A., Aswal, D.K., Chechimi, M.M.: Exfoliated clay/polyaniline nanocomposites through tandem diazonium cation exchange reactions and in situ oxidative polymerization of aniline. 4, 65213–65222 (2014)

    Google Scholar 

  45. Msaadi, R., Yilmaz, G., Allushi, A., Hamadi, S., Ammar, S., Chechimi, M.M., Yagsi, Y.: Highly selective copper ion imprinted clay/polymer nanocomposites prepared by visible light initiated radical photopolymerization. Polymers 11, 286 (2019)

    Article  Google Scholar 

  46. Atilla Tasdelen, M., Kreutzer, J., Yagci, Y.: In situ synthesis of polymer/clay nanocomposites by living and controlled/living polymerization. Macromol. Chem. Phys. 211, 279–285 (2010)

    Article  Google Scholar 

  47. Usuki, A., Kawasumi, M., Kojima, Y., Okada, A.: Swelling behavior of montmorillonite cation exchanged for ω-amino acids by e-caprolactam. J. Mater. Res. 8(5), 1174–1178 (1993)

    Article  Google Scholar 

  48. Pavlidou, S., Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008)

    Article  Google Scholar 

  49. Abedi, S., Abdouss, M.: A review of clay-supported Ziegler-Natta catalysts for production of polyolefin/clay nanocomposites through in situ polymerization. Appl. Catal. A 475, 386–409 (2014)

    Article  Google Scholar 

  50. Fornes, T.D., Paul, D.R.: Formation and properties of nylon 6 nanocomposites. Polímeros 13, 212–217 (2003)

    Article  Google Scholar 

  51. Guo, F., Aryana, S., Han, Y., Jiao, Y.: A review of the synthesis and applications of polymer-nanoclay composites. Appl. Sci. 8(9), 1696 (2018)

    Article  Google Scholar 

  52. Avila-Orta, C.A., González-Morones, P., Agüero-Valdez, D., González-Sánchez, A., Martínez-Colunga, J.G., Mata-Padilla, J.M., Cruz-Delgado, V.J.: Ultrasound-assisted melt extrusion of polymer nanocomposites. Intech Open (2019)

    Google Scholar 

  53. Lapshin, S., Swain, S., Isayev, A.I.: Ultrasound aided extrusion process for preparation of polyolefin–clay nanocomposites. Polym. Eng. Sci. 48, 1584–1591 (2008)

    Article  Google Scholar 

  54. García, L., Castell, P., Peinado, V., Muniesa, M., Fernandez, A.: Improvement of mechanical properties of poly(lactic acid) by integration of sepiolite nanoclays: Effect of ultrasonication on clay dispersion. Mater. Res. Innovations 18, S2-85–S2-89 (2014)

    Google Scholar 

  55. Lin, J.-J., Chan, Y.-N., Lan, Y.-F.: Hydrophobic modification of layered clays and compatibility for epoxy nanocomposites. Materials 3(4), 2588–2605 (2010)

    Google Scholar 

  56. Jan, I.-N., Lee, T.-M., Chiou, K.-C., Lin, J.-J.: Comparisons of physical properties of intercalated and exfoliated clay/epoxy nanocomposites. Ind. Eng. Chem. Res. 44, 2086–2090 (2005)

    Google Scholar 

  57. Kato, M., Usuki, A., Hasegawa, N., Okamoto, H., Kawasumi, M.: Development and applications of polyolefin–and rubber–clay nanocomposites. Polym. J. 43, 583–593 (2011)

    Article  Google Scholar 

  58. Dardmeh, N., Khosrowshahi, A., Almasi, H., Zandi, M.: Study on effect of the polyethylene terephthalate/nanoclay nanocomposite film on the migration of terephthalic acid into the yoghurt drinks simulant. J. Food Process Eng. 40(1), e12324 (2017)

    Article  Google Scholar 

  59. Puggal, S., Mahajan, S.: Evaluation of mechanical properties of polymer-clay nanocomposites subjected to different environmental conditions. Int. J. Appl. Eng. Res. 10, 22069–22076 (2015)

    Google Scholar 

  60. Zhou, W.Y., Guo, B., Liu, M., Liao, R., Rabie, A.B., Jia, D.: Poly(vinyl alcohol)/Halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. J. Biomed. Mater. Res. Part a 93, 1574–1587 (2009)

    Google Scholar 

  61. Liu, M., Zhang, Y., Wu, C., Xiong, S., Zhou, C.: Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol. 51(4), 566–575 (2012)

    Article  Google Scholar 

  62. Wang, H.W., Dong, R.X., Liu, C.L., Chang, H.Y.: Effect of clay on properties of polyimide-clay nanocomposites. J. Appl. Polym. Sci. 104(1), 318–324 (2007)

    Article  Google Scholar 

  63. Blumstein, A.: Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J. Polym. Sci. A Gen. Pap. 3(7), 2665–2672 (1965)

    Google Scholar 

  64. Vyazovkin, S., Dranca, I., Fan, X., Advincula, R.: Kinetics of the thermal and thermo-oxidative degradation of a polystyrene-clay nanocomposite. Macromol. Rapid Commun. 25, 498–503 (2004)

    Article  Google Scholar 

  65. Levchik, S.V., Weil, E.D.: Combustion and fire retardancy of aliphatic nylons. Polym. Int. 49(10), 1033–1073 (2000)

    Article  Google Scholar 

  66. Gilman, J. W.: Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites1 this work was carried out by the National Institute of Standards and Technology (NIST), an agency of the U. S. government, and by statute is not subject to copyright in the United States.1. Appl. Clay Sci. 15(1), 31–49 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswabandita Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deheri, P.K., Kar, B. (2021). Synthesis of Nanoclay Composite Material. In: Mubarak, N.M., Khalid, M., Walvekar, R., Numan, A. (eds) Contemporary Nanomaterials in Material Engineering Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62761-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62761-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62760-7

  • Online ISBN: 978-3-030-62761-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics