Skip to main content

Magnetism and Biology

  • Living reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

There are many links between magnetism and biology. One way to classify them is according to whether they are naturally occurring or whether they concern the exploitation of magnetism in biology and medicine. Here we refer to the former as “biomagnetism” and the latter as “magnetobiology.” Examples of biomagnetism discussed here are magnetic navigation in animals, magnetic signals generated by animals, and the presence of iron in the body. The field of magnetobiology may be subdivided into imaging, fixation, actuation, heating, or stimulation, and it covers topics ranging from fundamental studies in biology to biomedical applications. Biomagnetic phenomena are not new, but recent advances in magnetobiology are shedding light on our current understanding of biomagnetism. Thus, biomagnetism and magnetobiology are closely interlinked. While the fundamental processes at play are well understood in certain applications (e.g., magnetic resonance imaging, cell sorting in microfluidics), the exact link between the magnetic cause and the biological effect remains to be verified in other cases (e.g., magnetically guided navigation in birds, transcranial magnetic stimulation, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Blakemore, R.P.: Magnetotactic bacteria. Annu. Rev. Microbiol. 36, 217–238 (1982)

    Article  Google Scholar 

  2. Lefevre, C.T., Bazylinski, D.A.: Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol. Mol. Biol. Rev. 77, 497–526 (2013)

    Article  Google Scholar 

  3. Bellini, S.: Su di un particolare comportamento di batteri d’acqua dolce. Institute of Microbiology, University of Pavia, Pavia (1963)

    Google Scholar 

  4. Vargas, G., Cypriano, J., Correa, T., Leão, P., Bazylinski, D., Abreu, F.: Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules. 23, 2438–2425 (2018)

    Article  Google Scholar 

  5. Bazylinski, D.A., Lefèvre, C.T., Schüler, D.: Magnetotactic bacteria. In: The Prokaryotes, pp. 453–494. Springer, Berlin/Heidelberg (2013)

    Chapter  Google Scholar 

  6. Wiltschko, W., Wiltschko, R.: Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A. 191, 675–693 (2005)

    Article  MATH  Google Scholar 

  7. Johnsen, S., Lohmann, K.J.: The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005)

    Article  Google Scholar 

  8. Wiltschko, W., Wiltschko, R.: Magnetic Compass of European Robins. Science. 176, 62–64 (1972)

    Article  ADS  MATH  Google Scholar 

  9. Wiltschko, W., Munro, U., Ford, H., Wiltschko, R.: Red light disrupts magnetic orientation of migratory birds. Nature. 364, 525–527 (1993)

    Article  ADS  Google Scholar 

  10. Hanzlik, M., Heunemann, C., Holtkamp-Rötzler, E., Winklhofer, M., Petersen, N., Fleissner, G.: Superparamagnetic magnetite in the upper beak tissue of homing pigeons. Biometals. 13, 325–331 (2000)

    Article  Google Scholar 

  11. Davila, A.F., Fleissner, G., Winklhofer, M., Petersen, N.: A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys. Chem. Earth, Parts A/B/C. 28, 647–652 (2003)

    Article  ADS  Google Scholar 

  12. Treiber, C.D., Salzer, M.C., Riegler, J., Edelman, N., Sugar, C., Breuss, M., Pichler, P., Cadiou, H., Saunders, M., Lythgoe, M., Shaw, J., Keays, D.A.: Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature. 484, 367 (2012)

    Article  ADS  Google Scholar 

  13. Schulten, K., Swenberg, C.E., Weller, A.: A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111, 1–5 (1978)

    Article  Google Scholar 

  14. Maeda, K., Henbest, K.B., Cintolesi, F., Kuprov, I., Rodgers, C.T., Liddell, P.A., Gust, D., Timmel, C.R., Hore, P.J.: Chemical compass model of avian magnetoreception. Nature. 453, 387–390 (2008)

    Article  ADS  Google Scholar 

  15. Ahmad, M., Cashmore, A.R.: HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 366, 162–166 (1993)

    Article  ADS  Google Scholar 

  16. Ritz, T., Adem, S., Schulten, K.: A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000)

    Article  Google Scholar 

  17. Hore, P.J., Mouritsen, H.: The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016)

    Article  Google Scholar 

  18. Mouritsen, H.: Long-distance navigation and magnetoreception in migratory animals. Nature. 558, 50–59 (2018)

    Article  ADS  Google Scholar 

  19. Caton, R.: The electric currents of the brain. Am. J. EEG Technol. 10, 12–14 (2015)

    Article  Google Scholar 

  20. Berger, H.: Über das Elektrenkephalogramm des Menschen. Arch. Psychiatr. Nervenkr. 106, 165–187 (1937)

    Article  Google Scholar 

  21. Baule, G., McFee, R.: Detection of the magnetic field of the heart. Am. Heart J. 66, 95–96 (1963)

    Article  Google Scholar 

  22. Cohen, D.: Magnetic fields around the torso: production by electrical activity of the human heart. Science. 156, 652–654 (1967)

    Article  ADS  Google Scholar 

  23. Cohen, D.: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science. 161, 784–786 (1968)

    Article  ADS  Google Scholar 

  24. Bison, G., Castagna, N., Hofer, A., Knowles, P., Schenker, J.L., Kasprzak, M., Saudan, H., Weis, A.: A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 95, 173701 (2009)

    Google Scholar 

  25. Pannetier-Lecoeur, M., Polovy, H., Sergeeva-Chollet, N., Cannies, G., Fermon, C., Parkkonen, L.: Magnetocardiography with GMR-based sensors. J. Phys. Conf. Ser. 303, 012054 (2011)

    Article  Google Scholar 

  26. da Silva, F.L.: EEG and MEG: relevance to neuroscience. Neuron. 80, 1112–1128 (2013)

    Google Scholar 

  27. Roth, B.J., Wikswo Jr., J.P.: The magnetic field of a single axon. A comparison of theory and experiment. Biophys. J. 48, 93–109 (1985)

    Article  ADS  Google Scholar 

  28. Barry, J., Turner, M., Schloss, J.M., Glenn, D.R., Song, Y., Lukin, M., Park, H., Walsworth, R.L.: Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. 113, 14133–14138 (2016)

    Article  ADS  Google Scholar 

  29. Caruso, L., Wunderle, T., Lewis, C.M., Valadeiro, J., Trauchessec, V., Trejo Rosillo, J., Amaral, J.P., Ni, J., Jendritza, P., Fermon, C., Cardoso, S., Freitas, P.P., Fries, P., Pannetier-Lecoeur, M.: In vivo magnetic recording of neuronal activity. Neuron. 95, 1283–1291 (2017)

    Article  Google Scholar 

  30. Arami, H., Khandhar, A., Liggitt, D., Krishnan, K.M.: In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576–8607 (2015)

    Google Scholar 

  31. Pauling, L., Coryell, C.D.: The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc. Natl. Acad. Sci. 22, 210–216 (1936)

    Article  ADS  Google Scholar 

  32. Bren, K.L., Eisenberg, R., Gray, H.B.: Discovery of the magnetic behavior of hemoglobin: a beginning of bioinorganic chemistry. Proc. Natl. Acad. Sci. 112, 13123–13127 (2015)

    Article  ADS  Google Scholar 

  33. Moore, L.R., Fujioka, H., Williams, P.S., Chalmers, J.J., Grimberg, B., Zimmerman, P.A., Zborowski, M.: Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J. 20, 747–749 (2006)

    Article  Google Scholar 

  34. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Topical review: applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167–R181 (2003)

    Article  ADS  Google Scholar 

  35. Wells, J., Kazakova, O., Posth, O., Steinhoff, U., Petronis, S., Bogart, L.K., Southern, P., Pankhurst, Q., Johansson, C.: Standardisation of magnetic nanoparticles in liquid suspension. J. Phys. D: Appl. Phys. 50, 383003 (2017)

    Google Scholar 

  36. Levy, M., Luciani, N., Alloyeau, D., Elgrabli, D., Deveaux, V., Pechoux, C., Chat, S., Wang, G., Vats, N., Gendron, F., Factor, C., Lotersztajn, S., Luciani, A., Wilhelm, C., Gazeau, F.: Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 32, 3988–3999 (2011)

    Article  Google Scholar 

  37. Périgo, E.A., Hemery, G., Sandre, O., Ortega, D., Garaio, E., Plazaola, F., Teran, F.J.: Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015)

    Article  ADS  Google Scholar 

  38. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 242, 190–191 (1973)

    Article  ADS  Google Scholar 

  39. Lauterbur, P.C.: Magnetic resonance zeugmatography. Pure Appl. Chem. 40, 149–157 (1974)

    Article  Google Scholar 

  40. Mansfield, P., Grannell, P.K.: “Diffraction” and microscopy in solids and liquids by NMR. Phys. Rev. B. 12, 3618–3634 (1975)

    Article  ADS  Google Scholar 

  41. Arepally, A.: Targeted drug delivery under MRI guidance. J. Magn. Reson. Imaging. 27, 292–298 (2008)

    Article  Google Scholar 

  42. Ahrens, E.T., Bulte, J.W.M.: Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 13, 755–763 (2013)

    Article  Google Scholar 

  43. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87, 9868–9872 (1990)

    Article  ADS  Google Scholar 

  44. Glover, G.H.: Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 22, 133–139 (2011)

    Article  Google Scholar 

  45. Lee, I.-S., Preissl, H., Enck, P.: How to perform and interpret functional magnetic resonance imaging studies in functional gastrointestinal disorders. J. Neurogastroenterol. Motil. 23, 197–207 (2017)

    Article  Google Scholar 

  46. Silva, M.A., See, A.P., Essayed, W.I., Golby, A.J., Tie, Y.: Challenges and techniques for presurgical brain mapping with functional MRI. NeuroImage: Clinical. 17, 794–803 (2018)

    Article  Google Scholar 

  47. Cosmus, T.C., Parizh, M.: Advances in whole-body MRI magnets. IEEE Trans. Appl. Supercond. 21, 2104–2109 (2011)

    Article  ADS  Google Scholar 

  48. Vedrine, P., Aubert, G., Beaudet, F., Belorgey, J., Berriaud, C., Bredy, P., Donati, A., Dubois, O., Gilgrass, G., Juster, F.P., Meuris, C., Molinie, F., Nunio, F., Payn, A., Schild, T., Scola, L., Sinanna, A.: Iseult/INUMAC whole body 11.7 T MRI magnet status. IEEE Trans. Appl. Supercond. 20, 696–701 (2010)

    Article  ADS  Google Scholar 

  49. Budinger, T.F., Bird, M.D.: MRI and MRS of the human brain at magnetic fields of 14 T to 20 T: technical feasibility, safety, and neuroscience horizons. NeuroImage. 168, 509–531 (2018)

    Article  Google Scholar 

  50. Ghazinoor, S., Crues III, J.V.: Low field MRI: a review of the literature and our experience in upper extremity imaging. Clin. Sports Med. 25, 591–606 (2006)

    Article  Google Scholar 

  51. Sarracanie, M., LaPierre, C.D., Salameh, N., Waddington, D.E.J., Witzel, T., Rosen, M.S.: Low-cost high-performance MRI. Sci Rep. 5, 15177 (2015)

    Article  ADS  Google Scholar 

  52. Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature. 435, 1214–1217 (2005)

    Article  ADS  Google Scholar 

  53. Panagiotopoulos, N., Duschka, R.L., Ahlborg, M., Bringout, G., Debbeler, C., Graeser, M., Kaethner, C., Lüdtke-Buzug, K., Medimagh, H., Stelzner, J., Buzug, T.M., Barkhausen, J., Vogt, F.M., Haegele, J.: Magnetic particle imaging: current developments and future directions. Int. J. Nanomedicine. 10, 3097–3114 (2015)

    Article  Google Scholar 

  54. Bakenecker, A., Ahlborg, M., Debbeler, C., Kaethner, C., Lüdtke-Buzug, K.: Magnetic particle imaging. In: Precision Medicine, pp. 183–228. Elsevier (2018)

    Google Scholar 

  55. Bhat, V., Shenoy, K., Premkumar, P.: Magnets in dentistry. Arch. Med. Health Sci. 1, 73–79 (2013)

    Article  Google Scholar 

  56. Sliker, L., Ciuti, G., Rentschler, M., Menciassi, A.: Magnetically driven medical devices: a review. Expert Rev. Med. Devices. 12, 737–752 (2015)

    Article  Google Scholar 

  57. Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)

    Article  MathSciNet  Google Scholar 

  58. Kauffmann, P., Ith, A., O'Brien, D., Gaude, V., Boué, F., Combe, S., Bruckert, F., Schaack, B., Dempsey, N.M., Haguet, V., Reyne, G.: Diamagnetically trapped arrays of living cells above micromagnets. Lab Chip. 11, 3153–3161 (2011)

    Article  Google Scholar 

  59. Cugat, O., Delamare, J., Reyne, G.: Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn. 39, 3607–3612 (2003)

    Article  ADS  Google Scholar 

  60. Dempsey, N.M.: Hard magnetic materials for MEMS applications. In: Liu, J.P., Fullerton, E., Gutfleisch, O., Sellmyer, D.J. (eds.) Nanoscale Magnetic Materials and Applications, pp. 661–684. Springer (2009)

    Google Scholar 

  61. Dempsey, N.M., Le Roy, D., Marelli-Mathevon, H., Shaw, G., Dias, A., Kramer, R.B.G., Viet Cuong, L., Kustov, M., Zanini, L.F., Villard, C., Hasselbach, K., Tomba, C., Dumas-Bouchiat, F.: Micro-magnetic imprinting of high field gradient magnetic flux sources. Appl. Phys. Lett. 104, 262401 (2014)

    Article  ADS  Google Scholar 

  62. Walther, A., Marcoux, C., Desloges, B., Grechishkin, R., Givord, D., Dempsey, N.M.: Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems. J. Magn. Magn. Mater. 321, 590–594 (2009)

    Article  ADS  Google Scholar 

  63. Dumas-Bouchiat, F., Zanini, L.F., Kustov, M., Dempsey, N.M., Grechishkin, R., Hasselbach, K., Orlianges, J.C., Champeaux, C., Catherinot, A., Givord, D.: Thermomagnetically patterned micromagnets. Appl. Phys. Lett. 96, 102511 (2010)

    Article  ADS  Google Scholar 

  64. Franzreb, M., Siemann-Herzberg, M., Hobley, T.J., Thomas, O.R.T.: Protein purification using magnetic adsorbent particles. Appl. Microbiol. Biotechnol. 70, 505–516 (2006)

    Article  Google Scholar 

  65. Ambashta, R.D., Sillanpää, M.: Water purification using magnetic assistance: a review. J. Hazard. Mater. 180, 38–49 (2010)

    Article  Google Scholar 

  66. Miltenyi, S., Müller, W., Weichel, W., Radbruch, A.: High gradient magnetic cell separation with MACS. Cytometry. 11, 231–238 (1990)

    Article  Google Scholar 

  67. Herrmann, I.K., Bernabei, R.E., Urner, M., Grass, R.N., Beck-Schimmer, B., Stark, W.J.: Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Nephrol. Dial. Transplant. 26, 2948–2954 (2011)

    Article  Google Scholar 

  68. Frodsham, G., Pankhurst, Q.A.: Biomedical applications of high gradient magnetic separation: progress towards therapeutic haeomofiltration. Biomed. Eng./Biomed. Tech. 60, 393–404 (2015)

    Google Scholar 

  69. Stamopoulos, D., Benaki, D., Bouziotis, P., Zirogiannis, P.N.: In vitro utilization of ferromagnetic nanoparticles in hemodialysis therapy. Nanotechnology. 18, 495102–495115 (2007)

    Article  Google Scholar 

  70. Paul, F., Roath, S., Melville, D., Warhurst, D.C., Osisanya, J.O.S.: Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet. 318, 70–71 (1981)

    Article  Google Scholar 

  71. Tietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R.P., Janko, C., Pöttler, M., Dürr, S., Alexiou, C.: Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 468, 463–470 (2015)

    Google Scholar 

  72. Pouponneau, P., Bringout, G., Martel, S.: Therapeutic magnetic microcarriers guided by magnetic resonance navigation for enhanced liver chemoembilization: a design review. Ann. Biomed. Eng. 42, 929–939 (2014)

    Article  Google Scholar 

  73. Zakharchenko, A., Guz, N., Laradji, A.M., Katz, E., Minko, S.: Magnetic field remotely controlled selective biocatalysis. Nature Catalysis, 1, 73–81 (2018)

    Google Scholar 

  74. Häfeli, U.O.: Magnetically modulated therapeutic systems. Int. J. Pharm. 277, 19–24 (2004)

    Article  Google Scholar 

  75. Pamme, N.: Magnetism and microfluidics. Lab Chip. 6, 24–38 (2006)

    Article  Google Scholar 

  76. Gijs, M.A.M., Lacharme, F., Lehmann, U.: Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem. Rev. 110, 1518–1563 (2010)

    Article  Google Scholar 

  77. Hoshino, K., Huang, Y.-Y., Lane, N., Huebschman, M., Uhr, J.W., Frenkel, E.P., Zhang, X.: Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip. 11, 3449–3449 (2011)

    Article  Google Scholar 

  78. Ahn, C.H., Allen, M.G., Trimmer, W., Jun, Y.N., Erramilli, S.: A fully integrated micromachined magnetic particle separator. J. Microelectromech. Syst. 5, 151–158 (1996)

    Article  Google Scholar 

  79. Deng, T., Prentiss, M., Whitesides, G.M.: Fabrication of magnetic microfiltration systems using soft lithography. Appl. Phys. Lett. 80, 461–463 (2002)

    Article  ADS  Google Scholar 

  80. Osman, O., Toru, S., Dumas-Bouchiat, F., Dempsey, N.M., Haddour, N., Zanini, L.F., Buret, F., Reyne, G., Frénéa-Robin, M.: Microfluidic immunomagnetic cell separation using integrated permanent micromagnets. Biomicrofluidics. 7, 054115–054112 (2013)

    Article  Google Scholar 

  81. Pivetal, J., Toru, S., Frenea-Robin, M., Haddour, N., Cecillon, S., Dempsey, N.M., Dumas-Bouchiat, F., Simonet, P.: Selective isolation of bacterial cells within a microfluidic device using magnetic probe-based cell fishing. Sensors. Actuators. B. Chem. 195, 581–589 (2014)

    Article  Google Scholar 

  82. Pamme, N., Manz, A.: On-Chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal. Chem. 76, 7250–7256 (2004)

    Article  Google Scholar 

  83. Inglis, D.W., Riehn, R., Austin, R.H., Sturm, J.C.: Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 85, 5093–5095 (2004)

    Article  ADS  Google Scholar 

  84. Cardoso, S., Leitao, D.C., Dias, T.M., Valadeiro, J., Silva, M.D., Chicharo, A., Silverio, V., Gaspar, J., Freitas, P.P.: Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications. J. Phys. D. Appl. Phys. 50, 213001 (2017)

    Article  ADS  Google Scholar 

  85. Lim, B., Vavassori, P., Sooryakumar, R., Kim, C.: Nano/micro-scale magnetophoretic devices for biomedical applications. J. Phys. D: Appl. Phys, 50, 033002 (2017)

    Google Scholar 

  86. Crick, F.H.C., Hughes, A.F.W.: The physical properties of cytoplasm. Exp. Cell Res. 1, 37–80 (1950)

    Article  Google Scholar 

  87. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A., Croquette, V.: The elasticity of a single supercoiled DNA molecule. Science. 271, 1835–1837 (1996)

    Article  ADS  MATH  Google Scholar 

  88. Gosse, C., Croquette, V.: Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002)

    Article  Google Scholar 

  89. van Oene, M.M., Dickinson, L.E., Pedaci, F., Köber, M., Dulin, D., Lipfert, J., Dekker, N.H.: Biological magnetometry: torque on superparamagnetic beads in magnetic fields. Phys. Rev. Lett. 114, 218301 (2015)

    Article  ADS  Google Scholar 

  90. Danilowicz, C., Greenfield, D., Prentiss, M.: Dissociation of ligand−receptor complexes using magnetic tweezers. Anal. Chem. 77, 3023–3028 (2005)

    Article  Google Scholar 

  91. Kilinc, D., Lee, G.U.: Advances in magnetic tweezers for single molecule and cell biophysics. Integr. Biol. 6, 27–34 (2014)

    Article  Google Scholar 

  92. Wang, N., Butler, J., Ingber, D.: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 260, 1124–1127 (1993)

    Article  ADS  Google Scholar 

  93. Sniadecki, N.J., Anguelouch, A., Yang, M.T., Lamb, C.M., Liu, Z., Kirschner, S.B., Liu, Y., Reich, D.H., Chen, C.S.: Magnetic microposts as an approach to apply forces to living cells. Proc. Natl. Acad. Sci. 104, 14553–14558 (2007)

    Article  ADS  Google Scholar 

  94. Bidan, C.M., Fratzl, M., Coullomb, A., Moreau, P., Lombard, A.H., Wang, I., Balland, M., Boudou, T., Dempsey, N.M., Devillers, T., Dupont, A.: Magneto-active substrates for local mechanical stimulation of living cells. Sci. Rep. 8, 1464 (2018)

    Article  ADS  Google Scholar 

  95. Dobson, J.: Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008)

    Article  ADS  Google Scholar 

  96. Brunet, T., Bouclet, A., Ahmadi, P., Mitrossilis, D., Driquez, B., Brunet, A.-C., Henry, L., Serman, F., Bealle, G., Menager, C., Dumas-Bouchiat, F., Givord, D., Yanicostas, C., Le Roy, D., Dempsey, N.M., Plessis, A., Farge, E.: Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat. Commun. 4, 2821 (2013)

    Article  ADS  Google Scholar 

  97. Mitrossilis, D., Röper, J.-C., Le Roy, D., Driquez, B., Michel, A., Ménager, C., Shaw, G., Le Denmat, S., Ranno, L., Dumas-Bouchiat, F., Dempsey, N.M., Farge, E.: Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation. Nat. Commun. 8, 13883 (2017)

    Article  ADS  Google Scholar 

  98. Ogiue-Ikeda, M., Sato, Y., Ueno, S.: A new method to destruct targeted cells using magnetizable beads and pulsed magnetic force. IEEE Trans. Nanobiosci. 2, 262–265 (2003)

    Article  Google Scholar 

  99. Kim, D.-H., Rozhkova, E.A., Ulasov, I.V., Bader, S.D., Rajh, T., Lesniak, M.S., Novosad, V.: Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9, 165–171 (2010)

    Article  ADS  Google Scholar 

  100. Mansell, R., Vemulkar, T., Petit, D.C.M.C., Cheng, Y., Murphy, J., Lesniak, M.S., Cowburn, R.P.: Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction. Sci. Rep. 7, 4257 (2017)

    Article  ADS  Google Scholar 

  101. Wang, B., Bienvenu, C., Mendez-Garza, J., Lançon, P., Madeira, A., Vierling, P., Di Giorgio, C., Bossis, G.: Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles. J. Magn. Magn. Mater. 344, 193–201 (2013)

    Article  ADS  Google Scholar 

  102. Liu, D., Wang, L., Wang, Z., Cuschieri, A.: Magnetoporation and magnetolysis of cancer cells via carbon nanotubes induced by rotating magnetic fields. Nano Lett. 12, 5117–5121 (2012)

    Article  ADS  Google Scholar 

  103. Muroski, M.E., Morshed, R.A., Cheng, Y., Vemulkar, T., Mansell, R., Han, Y., Zhang, L., Aboody, K.S., Cowburn, R.P., Lesniak, M.S.: Controlled payload release by magnetic field triggered neural stem cell destruction for malignant glioma treatment. PLoS One. 11, e0145129 (2016)

    Article  Google Scholar 

  104. Cheng, Y., Muroski, M.E., Petit, D.C.M.C., Mansell, R., Vemulkar, T., Morshed, R.A., Han, Y., Balyasnikova, I.V., Horbinski, C.M., Huang, X., Zhang, L., Cowburn, R.P., Lesniak, M.S.: Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma. J. Control. Release. 223, 75–84 (2016)

    Article  Google Scholar 

  105. Plank, C., Zelphati, O., Mykhaylyk, O.: Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—progress and prospects. Adv. Drug. Deliv. Rev. 63, 1300–1331 (2011)

    Article  Google Scholar 

  106. Xiaofan, D., Jing, W., Quan, Z., Luwei, Z., Sijia, W., Zhenxi, Z., Cuiping, Y.: Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv. 25, 1516–1525 (2018)

    Article  Google Scholar 

  107. Uzhytchak, M., Lynnyk, A., Zablotskii, V., Dempsey, N.M., Dias, A.L., Bonfim, M., Lunova, M., Jirsa, M., Kubinová, Š., Lunov, O., Dejneka, A.: The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells. Appl. Phys. Lett. 111, 243703–243706 (2017)

    Article  ADS  Google Scholar 

  108. Ueno, S., Sekino, M.: Biomagnetics and bioimaging for medical applications. J. Magn. Magn. Mater. 304, 122–127 (2006)

    Article  ADS  Google Scholar 

  109. Kotani, H., Kawaguchi, H., Shimoaka, T., Iwasaka, M., Ueno, S., Ozawa, H., Nakamura, K., Hoshi, K.: Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J. Bone Miner. Res. 17, 1814–1821 (2002)

    Article  Google Scholar 

  110. Ueno, S., Sekino, M.: Biomagnetics: Principles and Applications of Biomagnetic Stimulation and Imaging. CRC Press, Boca Raton (2016)

    Google Scholar 

  111. Riggio, C., Calatayud, M.P., Giannaccini, M., Sanz, B., Torres, T.E., Fernández-Pacheco, R., Ripoli, A., Ibarra, M.R., Dente, L., Cuschieri, A., Goya, G.F., Raffa, V.: The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomed. Nanotechnol. Biol. Med. 10, 1549–1558 (2014)

    Article  Google Scholar 

  112. Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C., Taylor, C.B.: Selective inductive heating of lymph nodes. Ann. Surg. 146, 596–606 (1957)

    Article  Google Scholar 

  113. Atkinson, W.J., Brezovich, I.A., Chakraborty, D.P.: Usable frequencies in hyperthermia with thermal seeds. IEEE Trans. Biomed. Eng. BME-31, 70–75 (1984)

    Article  Google Scholar 

  114. Brezovich, I.A., Atkinson, W.J., Lilly, M.B.: Local hyperthermia with interstitial techniques. Cancer Res. 44, 4752s–4756s (1984)

    Google Scholar 

  115. Jordan, A.: Hyperthermia classic commentary: “Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia” by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51-68. Int J Hyperthermia. 25, 512–516 (2009)

    Article  Google Scholar 

  116. Gneveckow, U., Jordan, A., Scholz, R., Brüß, V., Waldöfner, N., Ricke, J., Feussner, A., Hildebrandt, B., Rau, B., Wust, P.: Description and characterization of the novel hyperthermia- and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia. Med. Phys. 31, 1444–1451 (2004)

    Article  Google Scholar 

  117. Schenck, J.F.: Physical interactions of static magnetic fields with living tissues. Prog. Biophys. Mol. Biol. 87, 185–204 (2005)

    Article  Google Scholar 

  118. Zablotskii, V., Syrovets, T., Schmidt, Z.W., Dejneka, A., Simmet, T.: Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies. Biomaterials. 35, 3164–3171 (2014)

    Article  Google Scholar 

  119. Zablotskii, V., Polyakova, T., Lunov, O., Dejneka, A.: How a high-gradient magnetic field could affect cell life. Sci. Rep., 6, 37407 (2016)

    Google Scholar 

  120. Barker, A.T., Jalinous, R., Freeston, I.L.: Non-invasive magnetic stimulation of human motor cortex. Lancet. 325, 1106–1107 (1985)

    Article  Google Scholar 

  121. Ueno, S., Tashiro, T., Harada, K.: Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J. Appl. Phys. 64, 5862–5864 (1988)

    Article  ADS  Google Scholar 

  122. Lu, M., Ueno, S.: Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation. PLoS One. 12, e0178422 (2017)

    Article  Google Scholar 

  123. Rossi, S., Hallett, M., Rossini, P.M., Pascual-Leone, A., Group, T.S.O.T.C: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 (2009)

    Article  Google Scholar 

  124. International Commission on Non-Ionizing Radiation Protection: Guidelines on limits of exposure to static magnetic fields. Health. Phys. 96, 504–514 (2009)

    Article  Google Scholar 

  125. Medical magnetic resonance (MR) procedures: protection of patients. Health Phys. 87, 197–216 (2004)

    Google Scholar 

  126. International Commission on Non-Ionizing Radiation Protection: Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 99, 818–836 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Michael Winklhofer for very fruitful discussions and feedback, to Kieron Ranno for artwork and to Mario Fratzl for assistance in putting the chapter together.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora M. Dempsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dempsey, N.M. (2021). Magnetism and Biology. In: Coey, M., Parkin, S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63101-7_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63101-7_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63101-7

  • Online ISBN: 978-3-030-63101-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics