Skip to main content

Toward Real-Time Analysis of Synchrotron Micro-Tomography Data: Accelerating Experimental Workflows with AI and HPC

  • Conference paper
  • First Online:
Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI (SMC 2020)

Abstract

Synchrotron light sources are routinely used to perform imaging experiments. In this paper, we review the relevant computational stages, identify bottlenecks, and highlight future opportunities to streamline data acquisition for experimental microscopy workflows. We demonstrate our preliminary exploration with an end-to-end scientific workflow on Summit based on micro-computed tomography data. Computational elements include: 1) reconstruction of volumetric image data; 2) denoising with deep neural networks; and 3) non-local means based segmentation and quantitative analysis.

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, R.T., Georgiadis, A., Ott, H., Klemin, D., Berg, S.: Critical capillary number: desaturation studied with fast x-ray computed microtomography. Geophys. Res. Lett. 41(1), 55–60 (2014)

    Article  Google Scholar 

  2. Armstrong, R.T., McClure, J.E., Berrill, M.A., Rücker, M., Schlüter, S., Berg, S.: Beyond Darcy’s law: the role of phase topology and ganglion dynamics for two-fluid flow. Phys. Rev. E 94, 043113 (2016)

    Article  Google Scholar 

  3. Barrett, J.F., Keat, N.: Artifacts in CT: recognition and avoidance. RadioGraphics 24, 1679–1691 (2004)

    Article  Google Scholar 

  4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Santa Clara (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  5. Berg, S., et al.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. 110(10), 3755–3759 (2013)

    Article  Google Scholar 

  6. Bicer, T., et al.: Real-time data analysis and autonomous steering of synchrotron light source experiments. In: 2017 IEEE 13th International Conference on e-Science (e-Science), pp. 59–68 (2017)

    Google Scholar 

  7. Blaiszik, B., Chard, K., Chard, R., Foster, I., Ward, L.: Data automation at light sources. In: AIP Conference Proceedings, vol. 2054, no. 1, p. 020003 (2019)

    Google Scholar 

  8. Boek, E.S., Venturoli, M.: Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 59(7), 2305–2314 (2010). Mesoscopic Methods in Engineering and Science

    Google Scholar 

  9. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: CVPR, pp. 60–65 (2005)

    Google Scholar 

  10. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  11. Chard, K., Tuecke, S., Foster, I.: Globus: recent enhancements and future plans. In: Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale, XSEDE 2016, New York, NY, USA. Association for Computing Machinery (2016)

    Google Scholar 

  12. Davidoiu, V., Hadjilucas, L., Teh, I., Smith, N.P., Schneider, J.E., Lee, J.: Evaluation of noise removal algorithms for imaging and reconstruction of vascular networks using micro-CT. Biomed. Phys. Eng. Expr. 2(4), 045015 (2016)

    Article  Google Scholar 

  13. Dowd, B.A., et al.: Developments in synchrotron x-ray computed microtomography at the national synchrotron light source. In: Bonse, U. (ed.) Developments in X-Ray Tomography II, vol. 3772, pp. 224–236. International Society for Optics and Photonics, SPIE (1999)

    Chapter  Google Scholar 

  14. du Plessis, A., Broeckhoven, C., Guelpa, A., le Roux, S.G.: Laboratory x-ray micro-computed tomography: a user guideline for biological samples. GigaScience 6(6), 04 (2017). gix027

    Google Scholar 

  15. Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Sig. Process. 27(1), 13–18 (1979)

    Article  Google Scholar 

  16. Iassonov, P., Gebrenegus, T., Tuller, M.: Segmentation of x-ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures. Water Resour. Res. 45(9) (2009)

    Google Scholar 

  17. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the SOBEL operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)

    Article  Google Scholar 

  18. Karnati, V., Uliyar, M., Dey, S.: Fast non-local algorithm for image denoising. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3873–3876 (2009)

    Google Scholar 

  19. Korzynska, A., Strojny, W., Hoppe, A., Wertheim, D., Hoser, P.: Segmentation of microscope images of living cells. Pattern Anal. Appl. 10(4), 301–319 (2007)

    Article  MathSciNet  Google Scholar 

  20. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research (PMLR), pp. 2965–2974, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018

    Google Scholar 

  21. Liu, Z., Bicer, T., Kettimuthu, R., Foster, I.: Deep learning accelerated light source experiments (2019)

    Google Scholar 

  22. Liu, Z., Bicer, T., Kettimuthu, R., Gursoy, D., De Carlo, F., Foster, I.: Tomogan: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion. J. Opt. Soc. Am. A 37(3), 422–434 (2020)

    Article  Google Scholar 

  23. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 163–169. ACM, New York (1987)

    Google Scholar 

  24. Marone, F., Stampanoni, M.: Regridding reconstruction algorithm for real-time tomographic imaging. J. Synchrotron Radiat. 19(6), 1029–1037 (2012)

    Article  Google Scholar 

  25. Perciano, T., et al.: Insight into 3D micro-CT data: exploring segmentation algorithms through performance metrics. J. Synchrotron Radiat. 24(5), 1065–1077 (2017)

    Article  Google Scholar 

  26. Porter, M.L., Wildenschild, D.: Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study. Comput. Geosci. 14, 15–30 (2010)

    Article  Google Scholar 

  27. Ramstad, T., Idowu, N., Nardi, C., Oren, P.-E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp. Porous Media 94(2, SI), 487–504 (2012)

    Google Scholar 

  28. Mark, L.: Rivers. tomoRecon: High-speed tomography reconstruction on workstations using multi-threading. In: Stock, S.R. (ed.) Developments in X-Ray Tomography VIII. vol. 8506, pp. 169–181. International Society for Optics and Photonics, SPIE (2012)

    Google Scholar 

  29. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: Definitions, algorithms and parallelization strategies. Fundam. Inf. 41(1,2), 187–228 (2000)

    Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Schlüter, S., Weller, U., Vogel, H.-J.: Segmentation of x-ray microtomography images of soil using gradient masks. Comput. Geosci. 36(10), 1246–1251 (2010)

    Article  Google Scholar 

  32. Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D.: Image processing of multiphase images obtained via x-ray microtomography: a review. Water Resour. Res. 50(4), 3615–3639 (2014)

    Article  Google Scholar 

  33. Ushizima, D., et al.: Statistical segmentation and porosity quantification of 3D x-ray micro-tomography. In: Proceedings of SPIE, vol. 8185, no. 09 (2011)

    Google Scholar 

  34. Vo, N.T., Atwood, R.C., Drakopoulos, M.: Preprocessing techniques for removing artifacts in synchrotron-based tomographic images. In: Müller, B., Wang, G. (eds.) Developments in X-Ray Tomography XII, vol. 11113, pp. 309–328. International Society for Optics and Photonics, SPIE (2019)

    Google Scholar 

  35. Wang, C., Steiner, U., Sepe, A.: Synchrotron big data science. Small 14(46), 1802291 (2018)

    Article  Google Scholar 

  36. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013). 35th Year Anniversary Issue

    Google Scholar 

  37. Xie, S., et al.: Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci. Rep. 8, 6700 (2018)

    Article  Google Scholar 

  38. Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)

    Article  Google Scholar 

  39. Zhang, H., Zeng, D., Zhang, H., Liang, Z., Ma, J.: Applications of nonlocal means algorithm in low-dose x-ray CT image processing and reconstruction: a review. Med. Phys. 44, 03 (2017)

    Google Scholar 

Download references

Acknowledgment

This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. An award of computer time was provided by the Frontier Center for Accelerated Application Readiness and the Summit Director’s Discretionary Program. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. McClure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McClure, J.E. et al. (2020). Toward Real-Time Analysis of Synchrotron Micro-Tomography Data: Accelerating Experimental Workflows with AI and HPC. In: Nichols, J., Verastegui, B., Maccabe, A.‘., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds) Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. SMC 2020. Communications in Computer and Information Science, vol 1315. Springer, Cham. https://doi.org/10.1007/978-3-030-63393-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63393-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63392-9

  • Online ISBN: 978-3-030-63393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics