Skip to main content

Advanced Understanding of Kinetics and Reaction Mechanisms on Semiconductor Surfaces

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

Extensive efforts have been directed towards the mitigation of carbon dioxide emissions into the atmosphere by developing renewable energy sources, e.g., solar, wind, and hydropower, to supplant our reliance on fossil fuels. Harvesting the energy of sunlight striking the Earth, which is the largest energy resource, is the most viable option to satisfy the world’s terawatt-scale energy demand. However, sunlight is intermittent and has a much lower energy density compared to chemical fuels. Overall, these issues have been a hurdle for replacing carbon-based fuels with sustainable and renewable energy. Solar-to-fuel energy conversion through photoelectrochemical (PEC) methods using semiconductors is one elegant solution to address the above issues by collecting solar energy and directly storing it in chemical bonds [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972)

    CAS  PubMed  Google Scholar 

  2. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. Lewis, N.S., Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729–15735 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. White, J.L., Baruch, M.F., Pander, J.E., Hu, Y., Fortmeyer, I.C., Park, J.E., Zhang, T., Liao, K., Gu, J., Yan, Y., Shaw, T.W., Abelev, E., Bocarsly, A.B..: Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Castro, S., Albo, J., Irabien, A.: Photoelectrochemical Reactors for CO2 Utilization. ACS Sustain. Chem. Eng. 6, 15877–15894.https://doi.org/10.1021/acssuschemeng.8b03706

  6. Wang, P., Wang, S., Wang, H., Wu, Z., Wang, L.: Recent progress on photo-electrocatalytic reduction of carbon dioxide. Part. Part. Syst. Charact. 35, 1700371 (2018)

    Article  CAS  Google Scholar 

  7. Roy, S.C., Varghese, O.K., Paulose, M., Grimes, C.A.: Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano. 4, 1259–1278 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Sivula, K., Le Formal, F., Grätzel, M.: Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem. 4, 432–449 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Giménez, S., Bisquert, J.: Photoelectrochemical Solar Fuel Production. Springer International Publishing, Cham (2016) http://link.springer.com/10.1007/978-3-319-29641-8

    Book  Google Scholar 

  10. Peter, L.M., Upul Wijayantha, K.G.: Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem. 15, 1983–1995 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. Osterloh, F.E.: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Memming, R.: Charge transfer kinetics at semiconductor electrodes. Berichte der Bunsengesellschaft für Phys. Chemie. 91, 353–361 (2014)

    Article  Google Scholar 

  13. Kelly, J.J.: The influence of surface recombination and trapping on the cathodic photocurrent at p-type III-V electrodes. J. Electrochem. Soc. 129, 730 (1982)

    Article  CAS  Google Scholar 

  14. Klahr, B.M., Hamann, T.W.: Current and voltage limiting processes in thin film hematite electrodes. J. Phys. Chem. C. 115, 8393–8399 (2011)

    Article  CAS  Google Scholar 

  15. Qiu, J., Hajibabaei, H., Nellist, M.R., Laskowski, F.A.L., Hamann, T.W., Boettcher, S.W.: Direct in situ measurement of charge transfer processes during photoelectrochemical water oxidation on catalyzed hematite. ACS Cent. Sci. 3, 1015–1025 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hajibabaei, H., Schon, A.R., Hamann, T.W.: Interface control of photoelectrochemical water oxidation performance with Ni 1– x Fe x O y modified hematite photoanodes. Chem. Mater. 29, 6674–6683 (2017)

    Article  CAS  Google Scholar 

  17. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J., Hamann, T.W.: Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “co–pi”-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693–16700 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H., Mao, D., Kim, K.-J., Frank, A.J.: Open-circuit photovoltage and charge recombination at semiconductor/liquid interfaces. Chem. Rev. 141, 1231–1236 (2010)

    Google Scholar 

  19. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. Masoumi, H.E.: A Theoretical Approach to Capabilities of the Traditional Urban Form in Promoting Sustainable Transportation, vol. 9. Wiley-Interscience (2014)

    Google Scholar 

  21. Colombara, D., Dale, P.J., Kissling, G.P., Peter, L.M., Tombolato, S.: Photoelectrochemical screening of solar cell absorber layers: electron transfer kinetics and surface stabilization. J. Phys. Chem. C. 120, 15956–15965 (2016)

    Article  CAS  Google Scholar 

  22. Tubbesing, K., Meissner, D., Memming, R., Kastening, B.: On the kinetics of electron transfer reactions at illuminated InP electrodes. J. Electroanal. Chem. Interfacial Electrochem. 214, 685–698 (1986)

    Article  CAS  Google Scholar 

  23. Kühne, H.-M.M., Tributsch, H.: Energetics and dynamics of the interface of RuS2 and implications for photoelectrolysis of water. J. Electroanal. Chem. 201, 263–282 (1986)

    Article  Google Scholar 

  24. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J., Hamann, T.W.: Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 7626–7636 (2012)

    Article  CAS  Google Scholar 

  25. Nakato, Y., Morita, K., Tsubomura, H.: In situ photoluminescence studies of n-type gallium phosphide semiconductor electrodes. Intermediates and mechanism of photoanodic electron-transfer reactions. J. Phys. Chem. 90, 2718–2723 (1986)

    Article  CAS  Google Scholar 

  26. Hamann, T.W., Gstrein, F., Brunschwig, B.S., Lewis, N.S.: Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces. J. Am. Chem. Soc. 127, 13949–13954 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Gao, Y., Hamann, T.W.: Quantitative hole collection for photoelectrochemical water oxidation with CuWO4. Chem. Commun. 53, 1285–1288 (2017)

    Article  CAS  Google Scholar 

  28. Memming, R.: Mechanism of the electrochemical reduction of persulfates and hydrogen peroxide. J. Electrochem. Soc. 116, 785–790 (1969)

    Article  CAS  Google Scholar 

  29. Zandi, O., Schon, A.R., Hajibabaei, H., Hamann, T.W.: Enhanced charge separation and collection in high-performance electrodeposited hematite films. Chem. Mater. 28, 765–771 (2016)

    Article  CAS  Google Scholar 

  30. Grave, D.A., Klotz, D., Kay, A., Dotan, H., Gupta, B., Visoly-Fisher, I., Rothschild, A.: Effect of orientation on bulk and surface properties of Sn-doped hematite (α-Fe2O3) heteroepitaxial thin film photoanodes. J. Phys. Chem. C. 120, 28961–28970 (2016)

    Article  CAS  Google Scholar 

  31. Marcus, R.A.: Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964)

    Article  CAS  Google Scholar 

  32. Lewis, N.S.: Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces. J. Phys. Chem. B. 102, 4843–4855 (1998)

    Article  CAS  Google Scholar 

  33. Peter, L.M.: Photoelectrochemical Solar Fuel Production, pp. 3–40. Springer International Publishing, Cham (2016.; http://link.springer.com/10.1007/978-3-319-29641-8_1)

    Book  Google Scholar 

  34. Nozik, A.J., Memming, R.: Physical chemistry of semiconductor−liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996)

    Article  CAS  Google Scholar 

  35. Lewis, N.: An analysis of charge transfer rate constants for semiconductor/liquid interfaces. Annu. Rev. Phys. Chem. 42, 543–580 (2002)

    Article  Google Scholar 

  36. Chun, H.: Electroosmotic effects on sample concentration at the interface of a micro/Nanochannel. Anal. Chem. 89, 8924–8930 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. Hajibabaei, H., Gao, Y., Hamann, T.W.: in RSC Energy and Environment Series, R. van de K.S. David Tilley, Stephan Lany, Ed. (2018), vols. 2018-Janua, pp. 100–127

    Google Scholar 

  38. Castro, S., Albo, J., Irabien, A.: Photoelectrochemical reactors for CO2 utilization. ACS Sustain. Chem. Eng. 6, 15877–15894 (2018)

    Article  CAS  Google Scholar 

  39. Debiemme-Chouvy, C., Cachet, H.: Evidence by electrochemical impedance spectroscopy of surface states mediated SiMo12 O 40 4− reduction at an n-InP electrode. J. Phys. Chem. C. 112, 18183–18188 (2008)

    Article  CAS  Google Scholar 

  40. Klahr, B., Gimenez, S., Zandi, O., Fabregat-Santiago, F., Hamann, T.: Competitive photoelectrochemical methanol and water oxidation with hematite electrodes. ACS Appl. Mater. Interfaces. 7, 7653–7660 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. Gao, Y., Hamann, T.W.: Elucidation of CuWO4 surface states during photoelectrochemical water oxidation. J. Phys. Chem. Lett. 8, 2700–2704 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. Vanmaekelbergh, D., Gomes, W.P., Cardon, F.: A quantitative analysis of photoinduced capacitance peaks in the impedance of the n-GaAs electrode. J. Electrochem. Soc. 134, 891 (1987)

    Article  CAS  Google Scholar 

  43. Allongue, P.: Band-edge shift and surface charges at illuminated n-GaAs∕aqueous electrolyte junctions. J. Electrochem. Soc. 132, 45 (1985)

    Article  CAS  Google Scholar 

  44. Sivula, K.: Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 4, 1624–1633 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. Braun, A., Sivula, K., Bora, D.K., Zhu, J., Zhang, L., Grätzel, M., Guo, J., Constable, E.C.: Direct observation of two Electron holes in a hematite photoanode during photoelectrochemical water splitting. J. Phys. Chem. C. 116, 16870–16875 (2012)

    Article  CAS  Google Scholar 

  46. Lincot, D., Vedel, J.: Recombination and charge transfer at the illuminated n-CdTe/electrolyte interface. J. Electroanal. Chem. Interfacial Electrochem. 220, 179–200 (1987)

    Article  CAS  Google Scholar 

  47. Zhong, M., Hisatomi, T., Sasaki, Y., Suzuki, S., Teshima, K., Nakabayashi, M., Shibata, N., Nishiyama, H., Katayama, M., Yamada, T., Domen, K.: Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chemie Int. Ed. 56, 4739–4743 (2017)

    Article  CAS  Google Scholar 

  48. He, Y., Thorne, J.E., Wu, C.H., Ma, P., Du, C., Dong, Q., Guo, J., Wang, D.: What limits the performance of Ta3N5 for solar water splitting? Chem. 1, 640–655 (2016)

    Article  CAS  Google Scholar 

  49. Beckmann, K.H., Memming, R.: Photoexcitation and luminescence in redox processes on gallium phosphide electrodes. J. Electrochem. Soc. 116, 368–373 (1969)

    Article  Google Scholar 

  50. Upul Wijayantha, K.G., Saremi-Yarahmadi, S., Peter, L.M.: Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 5264–5270 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., Thimsen, E.: Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. Bisquert, J.: Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5, 5360 (2003)

    Article  CAS  Google Scholar 

  53. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., Bisquert, J.: Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. Meier, A., Kocha, S.S., Hanna, M.C., Nozik, A.J., Siemoneit, K., Reineke-Koch, R., Memming, R.: Electron transfer rate constants for majority electrons at GaAs and GaInP2 semiconductor−liquid interfaces. J. Phys. Chem. B. 101, 7038–7042 (1997)

    Article  CAS  Google Scholar 

  55. McEvoy, A.J., Etman, M., Hemming, M.: Interface charging and intercalations effects on d-band transition metal diselenide photoelectrodes. J. Electroanal. Chem. Interfacial Electrochem. 190, 225–241 (1985)

    Article  CAS  Google Scholar 

  56. Thorne, J.E., Jang, J.-W.W., Liu, E.Y., Wang, D.: Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem. Sci. 7, 3347–3354 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jang, J.W., Du, C., Ye, Y., Lin, Y., Yao, X., Thorne, J., Liu, E., McMahon, G., Zhu, J., Javey, A., Guo, J., Wang, D.: Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015)

    Article  PubMed  Google Scholar 

  58. Zandi, O., Hamann, T.W.: Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8, 778–783 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. Le Formal, F., Durrant, J.R., Mesa, C.A., Grätzel, M., Pastor, E., Pendlebury, S.R., Tilley, S.D.: Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629–6637 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ma, Y., Mesa, C.A., Pastor, E., Kafizas, A., Francàs, L., Le Formal, F., Pendlebury, S.R., Durrant, J.R.: Rate law analysis of water oxidation and hole scavenging on a BiVO4 photoanode. ACS Energy Lett. 1, 618–623 (2016)

    Article  CAS  Google Scholar 

  61. Klahr, B., Hamann, T.: Water oxidation on hematite photoelectrodes: insight into the nature of surface states through in situ spectroelectrochemistry. J. Phys. Chem. C. 118, 10393–10399 (2014)

    Article  CAS  Google Scholar 

  62. Kafizas, A., Ma, Y., Pastor, E., Pendlebury, S.R., Mesa, C., Francàs, L., Le Formal, F., Noor, N., Ling, M., Sotelo-Vazquez, C., Carmalt, C.J., Parkin, I.P., Durrant, J.R.: Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: a rate law analysis. ACS Catal. 7, 4896–4903 (2017)

    Article  CAS  Google Scholar 

  63. Lu, F., Zhou, M., Zhou, Y., Zeng, X.: First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small. 13, 1701931 (2017)

    Article  CAS  Google Scholar 

  64. Mom, R.V., Cheng, J., Koper, M.T.M., Sprik, M.: Modeling the oxygen evolution reaction on metal oxides: the infuence of unrestricted DFT calculations. J. Phys. Chem. C. 118, 4095–4102 (2014)

    Article  CAS  Google Scholar 

  65. Rossmeisl, J., Logadottir, A., Nørskov, J.K.: Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005)

    Article  CAS  Google Scholar 

  66. Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J.K., Bell, A.T.: Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J., Nørskov, J.K.: Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007)

    Article  CAS  Google Scholar 

  68. Xu, L., Jiang, Q., Xiao, Z., Li, X., Huo, J., Wang, S., Dai, L.: Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chemie Int. Ed. 55, 5277–5281 (2016)

    Article  CAS  Google Scholar 

  69. Smith, R.D.L., Pasquini, C., Loos, S., Chernev, P., Klingan, K., Kubella, P., Mohammadi, M.R., Gonzalez-Flores, D., Dau, H.: Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat. Commun. 8, 2022 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Rao, R.R., Kolb, M.J., Halck, N.B., Pedersen, A.F., Mehta, A., You, H., Stoerzinger, K.A., Feng, Z., Hansen, H.A., Zhou, H., Giordano, L., Rossmeisl, J., Vegge, T., Chorkendorff, I., Stephens, I.E.L., Shao-Horn, Y.: Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ. Sci. 10, 2626–2637 (2017)

    Article  CAS  Google Scholar 

  71. Man, I.C., Su, H.-Y., Calle-Vallejo, F., Hansen, H.A., Martínez, J.I., Inoglu, N.G., Kitchin, J., Jaramillo, T.F., Nørskov, J.K., Rossmeisl, J.: Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 3, 1159–1165 (2011)

    Article  CAS  Google Scholar 

  72. Valdés, Á., Qu, Z.-W., Kroes, G.-J., Rossmeisl, J., Nørskov, J.K.: Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C. 112, 9872–9879 (2008)

    Article  CAS  Google Scholar 

  73. Nørskov, J.K., Bligaard, T., Logadottir, A., Bahn, S., Hansen, L.B., Bollinger, M., Bengaard, H., Hammer, B., Sljivancanin, Z., Mavrikakis, M., Xu, Y., Dahl, S., Jacobsen, C.J.H.: Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002)

    Article  CAS  Google Scholar 

  74. Bockris, J.O., Potter, E.C.: The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 99, 169 (1952)

    Article  CAS  Google Scholar 

  75. Conway, B.E., Tilak, B.V.: Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta. 47, 3571–3594 (2002)

    Article  CAS  Google Scholar 

  76. Conway, B.E., Salomon, M.: Electrochemical reaction orders: applications to the hydrogen- and oxygen-evolution reactions. Electrochim. Acta. 9, 1599–1615 (1964)

    Article  CAS  Google Scholar 

  77. Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U.: Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005)

    Article  CAS  Google Scholar 

  78. Parsons, R.: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053 (1958)

    Article  CAS  Google Scholar 

  79. Trasatti, S.: Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972)

    Article  CAS  Google Scholar 

  80. Miles, M.H.: Evaluation of electrocatalysts for water electrolysis in alkaline solutions. J. Electroanal. Chem. Interfacial Electrochem. 60, 89–96 (1975)

    Article  CAS  Google Scholar 

  81. Halmann, M.: Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature. 275, 115–116 (1978)

    Article  CAS  Google Scholar 

  82. Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O.: Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta. 39, 1833–1839 (1994)

    Article  CAS  Google Scholar 

  83. Benjaminsen, T.A., Holden, S., Lund, C., Sjaastad, E.: Formalisation of land rights: some empirical evidence from Mali, Niger and South Africa. Land Use Policy. 26, 28–35 (2009)

    Article  Google Scholar 

  84. Chen, Y., Li, C.W., Kanan, M.W.: Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012)

    Article  CAS  PubMed  Google Scholar 

  85. Detweiler, Z.M., White, J.L., Bernasek, S.L., Bocarsly, A.B..: Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir. 30, 7593–7600 (2014)

    Article  CAS  PubMed  Google Scholar 

  86. Baruch, M.F., Pander, J.E., White, J.L., Bocarsly, A.B..: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148–3156 (2015)

    Article  CAS  Google Scholar 

  87. Chen, Y., Kanan, M.W.: Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012)

    Article  CAS  PubMed  Google Scholar 

  88. Hirota, K., Tryk, D.A., Yamamoto, T., Hashimoto, K., Okawa, M., Fujishima, A.: Photoelectrochemical reduction of CO 2 in a high-pressure CO 2 + methanol medium at p-type semiconductor electrodes. J. Phys. Chem. B. 102, 9834–9843 (1998)

    Article  CAS  Google Scholar 

  89. Ono, H., Yokosuka, A., Tasiro, T., Morisaki, H., Yugo, S.: Characterization of diamond-coated Si electrodes for photoelectrochemical reduction of CO2. New Diam. Front. Carbon Technol. 12, 141–144 (2002)

    CAS  Google Scholar 

  90. Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., Kubiak, C.P.: Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63, 541–569 (2012)

    Article  CAS  PubMed  Google Scholar 

  91. Chang, X., Wang, T., Gong, J.: CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016)

    Article  CAS  Google Scholar 

  92. Kuhl, K.P., Cave, E.R., Abram, D.N., Jaramillo, T.F.: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012)

    Article  CAS  Google Scholar 

  93. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M., Surendranath, Y.: Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl. Acad. Sci. 113, E4585–E4593 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hall, A.S., Yoon, Y., Wuttig, A., Surendranath, Y.: Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015)

    Article  CAS  PubMed  Google Scholar 

  95. Yoon, Y., Hall, A.S., Surendranath, Y.: Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chemie - Int. Ed. 55, 15282–15286 (2016)

    Article  CAS  Google Scholar 

  96. Bard, A.J., Fan, F.R.F., Gioda, A.S., Nagasubramanian, G., White, H.S.: On the role of surface states in semiconductor electrode photoelectrochemical cells. Faraday Discuss. Chem. Soc. 70, 19–31 (1980)

    Article  Google Scholar 

  97. Aruchamy, A.: Photoelectrochemistry and Photovoltaics of Layered Semiconductors, vol. 14. Kluwer Academic, 1992

    Google Scholar 

  98. Yang, Y., Forster, M., Ling, Y., Wang, G., Zhai, T., Tong, Y., Cowan, A.J., Li, Y.: Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew. Chemie Int. Ed. 55, 3403–3407 (2016)

    Article  CAS  Google Scholar 

  99. Hu, Y., Boudoire, F., Hermann-Geppert, I., Bogdanoff, P., Tsekouras, G., Mun, B.S., Fortunato, G., Graetzel, M., Braun, A.: Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes. J. Phys. Chem. C. 120, 3250–3258 (2016)

    Article  CAS  Google Scholar 

  100. Zhu, C., Li, C., Zheng, M., Delaunay, J.-J.: Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces. 7, 22355–22363 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. Zandi, O., Hamann, T.W.: Enhanced water splitting efficiency through selective surface state removal. J. Phys. Chem. Lett. 5, 1522–1526 (2014)

    Article  CAS  PubMed  Google Scholar 

  102. Schlichthörl, L.M., Ponomarev, G., Peter, E.A., Schlichthörl, G.: An investigation of hydrogen evolution at p-Si by intensity modulated photocurrent spectroscopy and photomodulated microwave reflectivity. J. Electrochem. Soc. 142, 3062 (2006)

    Article  Google Scholar 

  103. Avital, Y.Y., Dotan, H., Klotz, D., Grave, D.A., Tsyganok, A., Gupta, B., Kolusheva, S., Visoly-Fisher, I., Rothschild, A., Yochelis, A.: Two-site H2O2 photo-oxidation on haematite photoanodes. Nat. Commun. 9, 4060 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Morbec, J.M., Narkeviciute, I., Jaramillo, T.F., Galli, G.: Optoelectronic properties of Ta3N5: a joint theoretical and experimental study. Phys. Rev. B Condens. Matter Mater. Phys. 90, 155204 (2014)

    Article  CAS  Google Scholar 

  105. Iordanova, N., Dupuis, M., Rosso, K.M.: Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122, 144305 (2005)

    Article  CAS  PubMed  Google Scholar 

  106. Gerischer, H.: in Photoeffects at Semiconductor-Electrolyte Interfaces (1981; http://pubs.acs.org/doi/abs/10.1021/bk-1981-0146.ch001), vol. 146, pp. 1–16

  107. de Tacconi, N.R., Tao, M., Wang, L.C., Chenthamarakshan, C.R., Rajeshwar, K.: Electrodeposited copper oxide films: effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films. 515, 3090–3095 (2006)

    Google Scholar 

  108. Inoue, T., Watanabe, T., Fujishima, A., Honda, K.: Investigation of CdS photoanode reaction in the electrolyte solution containing sulfide ion. Bull. Chem. Soc. Jpn. 52, 1243–1250 (1979)

    Article  CAS  Google Scholar 

  109. Kment, S., Schmuki, P., Hubicka, Z., Machala, L., Kirchgeorg, R., Liu, N., Wang, L., Lee, K., Olejnicek, J., Cada, M., Gregora, I., Zboril, R.: Photoanodes with fully controllable texture: the enhanced water splitting efficiency of thin hematite films exhibiting solely (110) crystal orientation. ACS Nano. 9, 7113–7123 (2015)

    Article  CAS  PubMed  Google Scholar 

  110. Gerischer, H.: The role of semiconductor structure and surface properties in photoelectrochemical processes. J. Electroanal. Chem. Interfacial Electrochem. 150, 553–569 (1983)

    Article  CAS  Google Scholar 

  111. Zhang, X., Cao, C., Bieberle-Hütter, A.: Orientation sensitivity of oxygen evolution reaction on hematite. J. Phys. Chem. C. 120, 28694–28700 (2016)

    Article  CAS  Google Scholar 

  112. Hengerer, R., Kavan, L., Krtil, P., Grätzel, M.: Orientation dependence of charge-transfer processes on TiO2 (anatase) single crystals. J. Electrochem. Soc. 147, 1467 (2000)

    Article  CAS  Google Scholar 

  113. Barrón, V., Torrent, J.: Surface hydroxyl configuration of various crystal faces of hematite and goethite. J. Colloid Interface Sci. 177, 407–410 (1996)

    Article  Google Scholar 

  114. Hu, Y.-S., Kleiman-Shwarsctein, A., Stucky, G.D., McFarland, E.W.: Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride. Chem. Commun., 2652–2654 (2009)

    Google Scholar 

  115. Wang, C.M.M., Mallouk, T.E.E.: Wide-range tuning of the titanium dioxide flat-band potential by adsorption of fluoride and hydrofluoric acid. J. Phys. Chem. 94, 4276–4280 (1990)

    Article  CAS  Google Scholar 

  116. Wang, C.M., Mallouk, T.E.: Photoelectrochemistry and interfacial energetics of titanium dioxide photoelectrodes in fluoride-containing solutions. J. Phys. Chem. 94, 124–118 (1990)

    Google Scholar 

  117. Kocha, S.S.: Displacement of the bandedges of GaInP2 in aqueous electrolytes induced by surface modification. J. Electrochem. Soc. 142, 2625–2630 (1995)

    Article  CAS  Google Scholar 

  118. Nakamura, R., Ohashi, N., Imanishi, A., Osawa, T., Matsumoto, Y., Koinuma, H., Nakato, Y.: Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO2 (rutile) surfaces. J. Phys. Chem. B. 109, 1648–1651 (2005)

    Article  CAS  PubMed  Google Scholar 

  119. Nakamura, R., Tanaka, T., Nakato, Y.: Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B. 108, 10617–10620 (2004)

    Article  CAS  Google Scholar 

  120. Nakamura, R., Nakato, Y.: Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004)

    Article  CAS  PubMed  Google Scholar 

  121. Kisumi, T., Tsujiko, A., Murakoshi, K., Nakato, Y.: Crystal-face and illumination intensity dependences of the quantum efficiency of photoelectrochemical etching, in relation to those of water photooxidation, at n-TiO2(rutile) semiconductor electrodes. J. Electroanal. Chem. 545, 99–107 (2003)

    Article  CAS  Google Scholar 

  122. Ikeda, S., Yamamoto, A., Noda, H., Maeda, M., Ito, K.: Influence of surface treatment of the p-GaP photocathode on the photoelectrochemical reduction of carbon dioxide. Bull. Chem. Soc. Jpn. 66, 2473–2477 (1993)

    Article  CAS  Google Scholar 

  123. Liu, R., Zheng, Z., Spurgeon, J., Yang, X.: Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504–2517 (2014)

    Article  CAS  Google Scholar 

  124. Guijarro, N., Prévot, M.S., Sivula, K.: Surface modification of semiconductor photoelectrodes. Phys. Chem. Chem. Phys. 17, 15655–15674 (2015)

    Article  CAS  PubMed  Google Scholar 

  125. Hu, S., Lewis, N.S., Ager, J.W., Yang, J., McKone, J.R., Strandwitz, N.C.: Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C. 119, 24201–24228 (2015)

    Article  CAS  Google Scholar 

  126. Moreno-Hernandez, I.A., Brunschwig, B.S., Lewis, N.S.: Tin oxide as a protective heterojunction with silicon for efficient photoelectrochemical water oxidation in strongly acidic or alkaline electrolytes. Adv. Energy Mater. 8, 1801155 (2018)

    Article  CAS  Google Scholar 

  127. Barroso, M., Cowan, A.J., Pendlebury, S.R., Grätzel, M., Klug, D.R., Durrant, J.R.: The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 133, 14868–14871 (2011)

    Article  CAS  PubMed  Google Scholar 

  128. Barroso, M., Mesa, C.A., Pendlebury, S.R., Cowan, A.J., Hisatomi, T., Sivula, K., Gratzel, M., Klug, D.R., Durrant, J.R.: Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. 109, 15640–15645 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hisatomi, T., Le Formal, F., Cornuz, M., Brillet, J., Tétreault, N., Sivula, K., Grätzel, M.: Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ. Sci. 4, 2512 (2011)

    Article  CAS  Google Scholar 

  130. Le Formal, F., Tétreault, N., Cornuz, M., Moehl, T., Grätzel, M., Sivula, K.: Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737–743 (2011)

    Article  Google Scholar 

  131. Kafizas, A., Xing, X., Selim, S., Mesa, C.A., Ma, Y., Burgess, C., McLachlan, M.A., Durrant, J.R.: Ultra-thin Al2O3 coatings on BiVO4 photoanodes: impact on performance and charge carrier dynamics. Catal. Today. 321–322, 59–66 (2019)

    Article  CAS  Google Scholar 

  132. Kim, W., Tachikawa, T., Monllor-Satoca, D., Kim, H., Majima, T., Choi, W.: Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy Environ. Sci. 6, 3732 (2013)

    Article  CAS  Google Scholar 

  133. Liu, Y., Yan, X., Kang, Z., Li, Y., Shen, Y., Sun, Y., Wang, L., Zhang, Y.: Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 29907 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gui, Q., Xu, Z., Zhang, H., Cheng, C., Zhu, X., Yin, M., Song, Y., Lu, L., Chen, X., Li, D.: Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation. ACS Appl. Mater. Interfaces. 6, 17053–17058 (2014)

    Article  CAS  PubMed  Google Scholar 

  135. Ondersma, J.W., Hamann, T.W.: Impedance investigation of dye-sensitized solar cells employing outer-sphere redox shuttles. J. Phys. Chem. C. 114, 638–645 (2010)

    Article  CAS  Google Scholar 

  136. Pascoe, A.R., Bourgeois, L., Duffy, N.W., Xiang, W., Cheng, Y.B.: Surface state recombination and passivation in nanocrystalline TiO2 dye-sensitized solar cells. J. Phys. Chem. C. 117, 25118–25126 (2013)

    Article  CAS  Google Scholar 

  137. Li, T.C., Góes, M.S., Fabregat-Santiago, F., Bisquert, J., Bueno, P.R., Prasittichai, C., Hupp, J.T., Marks, T.J.: Surface passivation of nanoporous TiO2 via atomic layer deposition of ZrO3 for solid-state dye-sensitized solar cell applications. J. Phys. Chem. C. 113, 18385–18390 (2009)

    Article  CAS  Google Scholar 

  138. DeVries, M.J., Pellin, M.J., Hupp, J.T.: Dye-sensitized solar cells: driving-force effects on electron recombination dynamics with cobalt-based shuttles. Langmuir. 26, 9082–9087 (2010)

    Article  CAS  PubMed  Google Scholar 

  139. Natu, G., Huang, Z., Ji, Z., Wu, Y.: The effect of an atomically deposited layer of alumina on NiO in P-type dye-sensitized solar cells. Langmuir. 28, 950–956 (2012)

    Article  CAS  PubMed  Google Scholar 

  140. Hamann, T.W., Farha, O.K., Hupp, J.T.: Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition. J. Phys. Chem. C. 112, 19756–19764 (2008)

    Article  CAS  Google Scholar 

  141. Fabregat-Santiago, F., García-Cañadas, J., Palomares, E., Clifford, J.N., Haque, S.A., Durrant, J.R., Garcia-Belmonte, G., Bisquert, J.: The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. J. Appl. Phys. 96, 6903–6907 (2004)

    Article  CAS  Google Scholar 

  142. Lee, M.H., Takei, K., Zhang, J., Kapadia, R., Zheng, M., Chen, Y.-Z., Nah, J., Matthews, T.S., Chueh, Y.-L., Ager, J.W., Javey, A.: P-type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chemie Int. Ed. 51, 10760–10764 (2012)

    Article  CAS  Google Scholar 

  143. Hu, S., Shaner, M.R., Beardslee, J.A., Lichterman, M., Brunschwig, B.S., Lewis, N.S.: Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science (80-. ). 344, 1005–1009 (2014)

    Article  CAS  Google Scholar 

  144. McDowell, M.T., Lichterman, M.F., Spurgeon, J.M., Hu, S., Sharp, I.D., Brunschwig, B.S., Lewis, N.S.: Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2 /Ni coatings. J. Phys. Chem. C. 118, 19618–19624 (2014)

    Article  CAS  Google Scholar 

  145. Kelly, N., Gibson, T.: Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int. J. Hydrog. Energy. 31, 1658–1673 (2006)

    Article  CAS  Google Scholar 

  146. Chen, Y.W., Prange, J.D., Dühnen, S., Park, Y., Gunji, M., Chidsey, C.E.D., McIntyre, P.C.: Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011)

    Article  CAS  PubMed  Google Scholar 

  147. Lee, D.K., Choi, K.-S.: Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy. 3, 53–60 (2018)

    Article  CAS  Google Scholar 

  148. Roger, I., Shipman, M.A., Symes, M.D.: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. 1, 1–13 (2017)

    Google Scholar 

  149. Zachäus, C., Abdi, F.F., Peter, L.M., van de Krol, R.: Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 8, 3712–3719 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Vequizo, J.J.M., Hojamberdiev, M., Teshima, K., Yamakata, A.: Role of CoOxcocatalyst on Ta3N5 photocatalysts studied by transient visible to mid-infrared absorption spectroscopy. J. Photochem. Photobiol. A Chem. 358, 315–319 (2018)

    Article  CAS  Google Scholar 

  151. Lin, F., Boettcher, S.W.: Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81–86 (2014)

    Article  CAS  PubMed  Google Scholar 

  152. Qiu, J., Hajibabaei, H., Nellist, M.R., Laskowski, F.A.L., Oener, S.Z., Hamann, T.W., Boettcher, S.W.: Catalyst deposition on photoanodes: the roles of intrinsic catalytic activity, catalyst electrical conductivity, and semiconductor morphology. ACS Energy Lett. 3, 961–969 (2018)

    Article  CAS  Google Scholar 

  153. Tilley, S.D., Cornuz, M., Sivula, K., Grätzel, M.: Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chemie Int. Ed. 49, 6405–6408 (2010)

    Article  CAS  Google Scholar 

  154. Badia-Bou, L., Mas-Marza, E., Rodenas, P., Barea, E.M., Fabregat-Santiago, F., Gimenez, S., Peris, E., Bisquert, J.: Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J. Phys. Chem. C. 117, 3826–3833 (2013)

    Article  CAS  Google Scholar 

  155. Kanan, M.W., Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science (80-. ). 321, 1072–1075 (2008)

    Article  CAS  Google Scholar 

  156. McDonald, K.J., Choi, K.S.: Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem. Mater. 23, 1686–1693 (2011)

    Article  CAS  Google Scholar 

  157. Nellist, M.R., Laskowski, F.A.L., Qiu, J., Hajibabaei, H., Sivula, K., Hamann, T.W., Boettcher, S.W.: Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy. 3, 46–52 (2018)

    Article  CAS  Google Scholar 

  158. Seabold, J.A., Choi, K.S.: Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011)

    Article  CAS  Google Scholar 

  159. Ma, Y., Le Formal, F., Kafizas, A., Pendlebury, S.R.R., Durrant, J.R.R.: Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. J. Mater. Chem. A. 3, 20649–20657 (2015)

    Article  CAS  Google Scholar 

  160. Ma, Y., Kafi, A., Pendlebury, S.R., Le Formal, F., Durrant, J.R., Kafizas, A., Pendlebury, S.R., Le Formal, F., Durrant, J.R.: Photoinduced absorption spectroscopy of CoPi on BiVO4: the function of CoPi during water oxidation. Adv. Funct. Mater. 26, 4951–4960 (2016)

    Article  CAS  Google Scholar 

  161. Carroll, G.M., Gamelin, D.R.: Kinetic analysis of photoelectrochemical water oxidation by mesostructured co-pi/α-Fe2O3 photoanodes. J. Mater. Chem. A. 4, 2986–2994 (2016)

    Article  CAS  Google Scholar 

  162. Zhou, X., Liu, R., Sun, K., Papadantonakis, K.M., Brunschwig, B.S., Lewis, N.S.: 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition. Energy Environ. Sci. 9, 892–897 (2016)

    Article  CAS  Google Scholar 

  163. Zhang, R., Zhang, Y.-C., Pan, L., Shen, G.-Q., Mahmood, N., Ma, Y.-H., Shi, Y., Jia, W., Wang, L., Zhang, X., Xu, W., Zou, J.-J.: Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal. 8, 3803–3811 (2018)

    Article  CAS  Google Scholar 

  164. Kamimuki, K., Inoue, T., Yasuda, K., Muro, M., Nakabayashi, T., Matsunawa, A.: Behavior of monitoring signals at the weld defect part in YAG laser welding -a study of the monitoring for YAG laser welding (report 2). Yosetsu Gakkai Ronbunshu/Quarterly J. Japan Weld. Soc. 20, 369–377 (2002)

    CAS  Google Scholar 

  165. Kwon, D.-H., Fuller, J.T., Kilgore, U.J., Sydora, O.L., Bischof, S.M., Ess, D.H.: Computational transition-state design provides experimentally verified Cr(P,N) catalysts for control of ethylene trimerization and tetramerization. ACS Catal. 8, 1138–1142 (2018)

    Article  CAS  Google Scholar 

  166. Deng, X., Tüysüz, H.: Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. ACS Catal. 4, 3701–3714 (2014)

    Article  CAS  Google Scholar 

  167. Trotochaud, L., Young, S.L., Ranney, J.K., Boettcher, S.W.: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental Iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014)

    Article  CAS  PubMed  Google Scholar 

  168. Chen, Y., Rui, K., Zhu, J., Dou, S.X.X., Sun, W.: Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chem. - A Eur. J. 25, 703–713 (2019)

    Article  CAS  Google Scholar 

  169. Wang, J., Ji, L., Chen, Z.: In situ rapid formation of a nickel-Iron-based electrocatalyst for water oxidation. ACS Catal. 6, 6987–6992 (2016)

    Article  CAS  Google Scholar 

  170. Louie, M.W., Bell, A.T.: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013)

    Article  CAS  PubMed  Google Scholar 

  171. Trotochaud, L., Ranney, J.K., Williams, K.N., Boettcher, S.W.: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012)

    Article  CAS  PubMed  Google Scholar 

  172. Kim, T.W., Choi, K.-S.: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science (80-. ). 343, 990–995 (2014)

    Article  CAS  Google Scholar 

  173. Powell, P.D.: Can site-directed mutagenesis eliminate autoimmunity arising from molecular mimicry? Med. Hypotheses. 50, 399–407 (1998)

    Article  CAS  PubMed  Google Scholar 

  174. Ojha, K., Saha, S., Dagar, P., Ganguli, A.K.: Nanocatalysts for hydrogen evolution reactions. Phys. Chem. Chem. Phys. 20, 6777–6799 (2018)

    Article  CAS  PubMed  Google Scholar 

  175. Sarkar, S., Peter, S.C.: An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 5, 2060–2080 (2018)

    Article  CAS  Google Scholar 

  176. Santos, E., Schmickler, W.: Electrocatalysis of hydrogen oxidation—theoretical foundations. Angew. Chemie Int. Ed. 46, 8262–8265 (2007)

    Article  CAS  Google Scholar 

  177. Quaino, P., Juarez, F., Santos, E., Schmickler, W.: Volcano plots in hydrogen electrocatalysis-uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Zou, X., Zhang, Y.: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015)

    Article  CAS  PubMed  Google Scholar 

  179. Vesborg, P.C.K., Seger, B., Chorkendorff, I.: Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 6, 951–957 (2015)

    Article  CAS  PubMed  Google Scholar 

  180. Basu, M., Zhang, Z.-W.W., Chen, C.-J.J., Chen, P.-T.T., Yang, K.-C.C., Ma, C.-G.G., Lin, C.C., Hu, S.-F.F., Liu, R.-S.S.: Heterostructure of Si and CoSe2: a promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution. Angew. Chemie Int. Ed. 54, 6211–6216 (2015)

    Article  CAS  Google Scholar 

  181. Wei, L., Chen, Y., Lin, Y., Wu, H., Yuan, R., Li, Z.: MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl. Catal. B Environ. 144, 521–527 (2014)

    Article  CAS  Google Scholar 

  182. Ikeda, S., Saito, Y., Yoshida, M., Noda, H., Maeda, M., Ito, K.: Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in non-aqueous electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 260, 335–345 (1989)

    Article  CAS  Google Scholar 

  183. Hinogami, R., Nakamura, Y., Yae, S., Nakato, Y.: An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. J. Phys. Chem. B. 102, 974–980 (1998)

    Article  CAS  Google Scholar 

  184. Ran, J., Jaroniec, M., Qiao, S.-Z.Z.: Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30, 1704649 (2018)

    Article  CAS  Google Scholar 

  185. Kortlever, R., Shen, J., Schouten, K.J.P., Calle-Vallejo, F., Koper, M.T.M.: Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015)

    Article  CAS  PubMed  Google Scholar 

  186. Chang, X., Wang, T., Yang, P., Zhang, G., Gong, J.: The development of cocatalysts for photoelectrochemical CO2 reduction. Adv. Mater. 1804710, 1804710 (2018)

    Google Scholar 

  187. Zhao, J., Wang, X., Xu, Z., Loo, J.S.C.: Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems. J. Mater. Chem. A. 2, 15228 (2014)

    Article  CAS  Google Scholar 

  188. Bohra, D., Smith, W.A.: Improved charge separation via Fe-doping of copper tungstate photoanodes. Phys. Chem. Chem. Phys. 17, 9857–9866 (2015)

    Article  CAS  PubMed  Google Scholar 

  189. Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959)

    Article  Google Scholar 

  190. Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914–1920 (1977)

    Article  CAS  Google Scholar 

  191. Klotz, D., Ellis, D.S., Dotan, H., Rothschild, A.: Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS. Phys. Chem. Chem. Phys. 18, 23438–23457 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Song, H., Macdonald, D.D.: Photoelectrochemical impedance spectroscopy. J. Electrochem. Soc. 138, 1408–1410 (1991)

    Article  CAS  Google Scholar 

  193. Gelderman, K., Lee, L., Donne, S.W.: Flat-band potential of a semiconductor: using the Mott–Schottky equation. J. Chem. Educ. 84, 685 (2007)

    Article  CAS  Google Scholar 

  194. Jarrett, H.S.: Photocurrent conversion efficiency in a Schottky barrier. J. Appl. Phys. 52, 4681–4689 (1981)

    Article  CAS  Google Scholar 

  195. Jamin, M., Lange, B.O.: FBand FBsfrom QCD sum rules. Phys. Rev. D - Part. Fields, Gravit. Cosmol. 65, 560051–560059 (2002)

    Article  Google Scholar 

  196. Cen, J., Wu, Q., Yan, D., Tao, J., Kisslinger, K., Liu, M., Orlov, A.: Photoelectrochemical water splitting with a SrTiO3: Nb/SrTiO3 n + −n homojunction structure. Phys. Chem. Chem. Phys. 19, 2760–2767 (2017)

    Article  CAS  PubMed  Google Scholar 

  197. Ponomarev, E.A., Peter, L.M.: A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). J. Electroanal. Chem. 396, 219–226 (1995)

    Article  Google Scholar 

  198. Li, J., Peter, L.M.: Surface recombination at semiconductor electrodes. J. Electroanal. Chem. 193, 27–47 (1985)

    Article  CAS  Google Scholar 

  199. Li, J., Peter, L.M.: Surface recombination at semiconductor electrodes: part IV. Steady-state and intensity modulated photocurrents at n-GaAs electrodes. J. Electroanal. Chem. 199, 1–26 (1986)

    Article  CAS  Google Scholar 

  200. Peter, L.M.: Dynamic aspects of semiconductor photoelectrochemistry. Chem. Rev. 90, 753–769 (1990)

    Article  CAS  Google Scholar 

  201. Peter, L.M.: Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J. Solid State Electrochem. 17, 315–326 (2013)

    Article  CAS  Google Scholar 

  202. Peter, L.M., Wijayantha, K.G.U., Tahir, A.A.: Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday Discuss. 155, 309–322 (2012)

    Article  CAS  PubMed  Google Scholar 

  203. Laskowski, F.A.L., Nellist, M.R., Qiu, J., Boettcher, S.W.: Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. J. Am. Chem. Soc. 141, 1394–1405 (2019)

    Article  CAS  PubMed  Google Scholar 

  204. Laskowski, F.A.L., Nellist, M.R., Venkatkarthick, R., Boettcher, S.W.: Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry. Energy Environ. Sci. 10, 570–579 (2017)

    Article  CAS  Google Scholar 

  205. Best, S., Crumbliss, A.L., Dunsch, L., Haga, M., Hartl, F., Kubiak, C.P., Winter, R., Yellowlees, L.J., Salsman, C., Murray, P., Dhungana, S., Kaim, W., Klein, A.: Spectroelectrochemistry, Boston

    Google Scholar 

  206. Sharpe, L.R., Heineman, W.R., Elder, R.C.: EXAFS spectroelectrochemistry. Chem. Rev. 90, 705–722 (1990)

    Article  CAS  Google Scholar 

  207. Soderholm, L., Antonio, M.R., Williams, C., Wasserman, S.R.: XANES spectroelectrochemistry: a new method for determining formal potentials. Anal. Chem. 71, 4622–4628 (1999)

    Article  CAS  Google Scholar 

  208. Kaim, W., Fiedler, J.: Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 38, 3373–3382 (2009)

    Article  CAS  PubMed  Google Scholar 

  209. Figueiredo, M.C., Ledezma-Yanez, I., Koper, M.T.M.: In situ spectroscopic study of CO 2 electroreduction at copper electrodes in acetonitrile. ACS Catal. 6, 2382–2392 (2016)

    Article  CAS  Google Scholar 

  210. Zhang, Y., Zhang, H., Liu, A., Chen, C., Song, W., Zhao, J.: Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode. J. Am. Chem. Soc. 140, 3264–3269 (2018)

    Article  CAS  PubMed  Google Scholar 

  211. Pastor, E., Le Formal, F., Mayer, M.T., Tilley, S.D., Francàs, L., Mesa, C.A., Grätzel, M., Durrant, J.R.: Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nat. Commun. 8, 14280 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ryczkwski, J.: IR spectroscopy in catalysis. Catal. Today. 68, 263–381 (2001)

    Article  Google Scholar 

  213. Herlihy, D.M., Waegele, M.M., Chen, X., Pemmaraju, C.D., Prendergast, D., Cuk, T.: Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nat. Chem. 8, 549–555 (2016)

    Article  CAS  PubMed  Google Scholar 

  214. Frank Ogletree, D., Bluhm, H., Hebenstreit, E.D., Salmeron, M.: Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 601, 151–160 (2009)

    Article  CAS  Google Scholar 

  215. Salmeron, M., Schlogl, R.: Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008)

    Article  CAS  Google Scholar 

  216. Starr, D.E., Liu, Z., Hävecker, M., Knop-Gericke, A., Bluhm, H.: Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev. 42, 5833 (2013)

    Article  CAS  PubMed  Google Scholar 

  217. Crumlin, E.J., Bluhm, H., Liu, Z.: In situ investigation of electrochemical devices using ambient pressure photoelectron spectroscopy. J. Electron Spectros. Relat. Phenomena. 190, 84–92 (2013)

    Article  CAS  Google Scholar 

  218. Takagi, Y., Uruga, T., Tada, M., Iwasawa, Y., Yokoyama, T.: Ambient pressure hard X-ray photoelectron spectroscopy for functional material systems as fuel cells under working conditions. Acc. Chem. Res. 51, 719–727 (2018)

    Article  CAS  PubMed  Google Scholar 

  219. Lichterman, M.F., Hu, S., Richter, M.H., Crumlin, E.J., Axnanda, S., Favaro, M., Drisdell, W., Hussain, Z., Mayer, T., Brunschwig, B.S., Lewis, N.S., Liu, Z., Lewerenz, H.-J.J.: Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8, 2409–2416 (2015)

    Article  CAS  Google Scholar 

  220. Axnanda, S., Crumlin, E.J.J., Mao, B., Rani, S., Chang, R., Karlsson, P.G.G., Edwards, M.O.M.M.O.M., Lundqvist, M.M., Moberg, R., Ross, P., Hussain, Z., Liu, Z.: Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5(1–12) (2015)

    Google Scholar 

  221. Ali-Löytty, H., Louie, M.W., Singh, M.R., Li, L., Sanchez Casalongue, H.G., Ogasawara, H., Crumlin, E.J., Liu, Z., Bell, A.T., Nilsson, A., Friebel, D.: Ambient-pressure XPS study of a Ni–Fe electrocatalyst for the oxygen evolution reaction. J. Phys. Chem. C. 120, 2247–2253 (2016)

    Article  CAS  Google Scholar 

  222. Favaro, M., Yang, J., Nappini, S., Magnano, E., Toma, F.M., Crumlin, E.J., Yano, J., Sharp, I.D.: Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 139, 8960–8970 (2017)

    Article  CAS  PubMed  Google Scholar 

  223. Zhang, B., Huang, X., Hu, H., Chou, L., Bi, Y.: Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting. J. Mater. Chem. A. 7, 4415–4419 (2019)

    Article  CAS  Google Scholar 

  224. Fabbri, E., Abbott, D.F., Nachtegaal, M., Schmidt, T.J.: Operando X-ray absorption spectroscopy: a powerful tool toward water splitting catalyst development. Curr. Opin. Electrochem. 5, 20–26 (2017)

    Article  CAS  Google Scholar 

  225. Görlin, M., Chernev, P., Ferreira de Araújo, J., Reier, T., Dresp, S., Paul, B., Krähnert, R., Dau, H., Strasser, P., De Araújo, J.F., Reier, T., Dresp, S., Paul, B., Krähnert, R., Dau, H., Strasser, P.: Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–5614 (2016)

    Article  PubMed  CAS  Google Scholar 

  226. Bates, M.K., Jia, Q., Doan, H., Liang, W., Mukerjee, S.: Charge-transfer effects in Ni-Fe and Ni-Fe-co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 6, 155–161 (2016)

    Article  CAS  Google Scholar 

  227. Enman, L.J., Stevens, M.B., Dahan, M.H., Nellist, M.R., Toroker, M.C., Boettcher, S.W.: Operando X-ray absorption spectroscopy shows Iron oxidation is concurrent with oxygen evolution in cobalt-iron (oxy)hydroxide electrocatalysts. Angew. Chemie Int. Ed. 57, 12840–12844 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful for the support of this work by NSF Award CHE-1664823.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamed Hajibabei Najafabadi or Thomas W. Hamann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shadabipour, P., Najafabadi, H.H., Hamann, T.W. (2022). Advanced Understanding of Kinetics and Reaction Mechanisms on Semiconductor Surfaces. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_29

Download citation

Publish with us

Policies and ethics