Skip to main content

The Destabilizing Impact of Non-performers in Multi-agent Groups

  • Chapter
  • First Online:
Recent Trends in Naval Engineering Research

Abstract

We examine the question of how a small number of non-performing individuals can impact the performance of a large multi-agent group. In particular, we look at models from the mathematical ecology community that describe the behavior of simple group aggregation by individuals that interact only through observation of their proximal neighbors. By taking this approach, we limit our focus to the interaction and grouping effects of the aggregation phenomena, rather than looking at specific detailed behaviors of individuals. We consider non-performing individuals to be agents that do not follow the stated rules of interaction of the rest of the group, but are otherwise identical to the others. Numerical simulations are performed to demonstrate the resulting effects of the non-performing individuals on these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Bellomo, Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach (Birkhauser, Boston, 2008)

    MATH  Google Scholar 

  2. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)

    Book  Google Scholar 

  3. G. Charness, L. Rigotti, A. Rustichini, Individual behavior and group membership. Am. Econ. Rev. 97(4), 1340–1352 (2007)

    Article  Google Scholar 

  4. I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  5. I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005)

    Article  Google Scholar 

  6. H. Dong, Y. Zhao, J. Wu, S. Gao, A velocity-adaptive Couzin model and its performance. Phys. A 391(5), 2145–2153 (2012)

    Article  Google Scholar 

  7. H. Duan, C. Sun, Swarm intelligence inspired shills and the evolution of cooperation. Sci. Rep. 4, 5210 (2014)

    Article  Google Scholar 

  8. L.-A. Giraldeau, T. Caraco, Social Foraging Theory (Princeton University Press, Princeton, 2000)

    Book  Google Scholar 

  9. L.-A. Giraldeau, D. Gillis, Optimal group size can be stable: a reply to Silby. Anim. Behav. 33(2), 666–667 (1985)

    Article  Google Scholar 

  10. J. Han, M. Li, L. Guo, Soft control on collective behavior of a group of autonomous agents by a shill agent. J. Syst. Sci. Complex. 19, 54–62 (2006)

    Article  MathSciNet  Google Scholar 

  11. A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  12. S. Janson, M. Middendorft, M. Beekman, Honeybee swarms: how do scouts guide a swarm of uninformed bees? Anim. Behav. 70(2), 349–358 (2005)

    Article  Google Scholar 

  13. J. Kennedy, R.C. Eberhart, Swarm Intelligence (Morgan Kaufmann, San Francisco, 2001)

    Google Scholar 

  14. J. Long, Darwin’s Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology (Basic Books, New York, 2012)

    Google Scholar 

  15. H.-S. Niwa, Power-law versus exponential distributions of animal group sizes. J. Theor. Biol. 224(4), 451–457 (2003)

    Article  MathSciNet  Google Scholar 

  16. A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  17. C.W. Reynolds, Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  18. K. Saulnier, D. Saldana, A. Prorok, G.J. Pappas, V. Kumar, Resilient flocking for mobile robot teams. IEEE Robot. Autom. Lett. 2(3), 1039–1046 (2017)

    Article  Google Scholar 

  19. R.M. Sibly, Optimal group size is unstable. Anim. Behav. 31(3), 947–948 (1983)

    Article  Google Scholar 

  20. D.W. Stephens, J.R. Krebs, Foraging Theory (Princeton University Press, Princeton, 1986)

    Google Scholar 

  21. D.J.T. Sumpter, Collective Animal Behavior (Princeton University Press, Princeton, 2010)

    Book  Google Scholar 

  22. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transitions in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  23. X. Wang, J. Han, H. Han, Special agents can promote cooperation in the population. PLoS One 6(12), e29182 (2011)

    Google Scholar 

  24. T. Winke, J.R. Stevens, Is cooperative memory special? The role of costly errors, context, and social network size when remembering cooperative actions. Front. Robot. AI 4, 52 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Wettergren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wettergren, T.A. (2021). The Destabilizing Impact of Non-performers in Multi-agent Groups. In: Ruffa, A.A., Toni, B. (eds) Recent Trends in Naval Engineering Research. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-64151-1_12

Download citation

Publish with us

Policies and ethics