Skip to main content

Influence of Extracellular Environment on Electroporation Efficiency

  • Conference paper
  • First Online:
8th European Medical and Biological Engineering Conference (EMBEC 2020)

Abstract

In this work, the effects of extracellular environment, in terms of both electroporation (EP) medium and extracellular matrix (ECM), on EP efficiency were evaluated in a 3D in vitro model composed of HCC1954 cells cultured on hyaluronic acid (HA) hydrogels enriched with self-assembling peptides carrying IKVAV motifs. The results from 3D cultures were compared to those derived from cell in suspension and adherent cultures. EP was carried out by using either RPMI (high conductivity medium) and electroporation buffer (low conductivity medium) and applying 8 rectangular voltage pulses at 700 V (electric field strength 1000 V/cm with plate electrode with 7 mm gap). Collectively, our data highlighted that cell organization and the presence of ECM modulate local electrical properties, thus affecting EP efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mir, L.M.: Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53, 1–10 (2001). https://doi.org/10.1016/S0302-4598(00)00112-4

    Article  Google Scholar 

  2. Gehl, J.: Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177, 437–447 (2003). https://doi.org/10.1046/j.1365-201X.2003.01093.x

    Article  Google Scholar 

  3. Marty, M., Sersa, G., Garbay, J.R., Gehl, J., Collins, C.G., Snoj, M., Billard, V., Geertsen, P.F., Larkin, J.O., Miklavcic, D., Pavlovic, I., Paulin-Kosir, S.M., Cemazar, M., Morsli, N., Soden, D.M., Rudolf, Z., Robert, C., O’Sullivan, G.C., Mir, L.M.: Electrochemotherapy – an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur. J. Cancer Suppl. 4, 3–13 (2006). https://doi.org/10.1016/j.ejcsup.2006.08.002

    Article  Google Scholar 

  4. Mir, L.M., Glass, L.F., Sersa, G., Teissié, J., Domenge, C., Miklavcic, D., Jaroszeski, M.J., Orlowski, S., Reintgen, D.S., Rudolf, Z., Belehradek, M., Gilbert, R., Rols, M.P., Belehradek, J., Bachaud, J.M., DeConti, R., Stabuc, B., Cemazar, M., Coninx, P., Heller, R.: Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br. J. Cancer 77, 2336–2342 (1998)

    Article  Google Scholar 

  5. Campana, L.G., Bianchi, G., Mocellin, S., Valpione, S., Campanacci, L., Brunello, A., Donati, D., Sieni, E., Rossi, C.R.: Electrochemotherapy treatment of locally advanced and metastatic soft tissue sarcomas: results of a non-comparative phase II study. World J. Surg. 38(4), 813–822 (2013). https://doi.org/10.1007/s00268-013-2321-1

    Article  Google Scholar 

  6. Campana, L.G., Edhemovic, I., Soden, D., Perrone, A.M., Scarpa, M., Campanacci, L., Cemazar, M., Valpione, S., Miklavčič, D., Mocellin, S., Sieni, E., Sersa, G.: Electrochemotherapy – emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur. J. Surg. Oncol. 45, 92–102 (2019). https://doi.org/10.1016/j.ejso.2018.11.023

    Article  Google Scholar 

  7. Kis, E., Olàh, J., Ócsai, H., Baltas, E., Gyulai, R., Kemény, L., Horvath, A.R.: Electrochemotherapy of cutaneous metastases of Melanoma—a case series study and systematic review of the evidence. Dermatol. Surg. 37, 816–824 (2011). https://doi.org/10.1111/j.1524-4725.2011.01951..x

  8. Miklavčič, D., Pavšelj, N., Hart, F.X.: Electric properties of tissues. In: Wiley Encyclopedia of Biomedical Engineering. Wiley (2006)

    Google Scholar 

  9. Sel, D., Cukjati, D., Batiuskaite, D., Slivnik, T., Mir, L.M., Miklavcic, D.: Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52, 816–827 (2005). https://doi.org/10.1109/TBME.2005.845212

    Article  Google Scholar 

  10. Čorović, S., Županič, A., Kranjc, S., Al Sakere, B., Leroy-Willig, A., Mir, L.M., Miklavčič, D.: The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med. Biol. Eng. Comput. 48, 637–648 (2010). https://doi.org/10.1007/s11517-010-0614-1

  11. Ivorra, A., Al-Sakere, B., Rubinsky, B., Mir, L.M.: In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys. Med. Biol. 54, 5949 (2009)

    Google Scholar 

  12. Laufer, S., Ivorra, A., Reuter, V.E., Rubinsky, B., Solomon, S.B.: Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol. Meas. 31, 995 (2010)

    Google Scholar 

  13. Campana, L.G., Cesari, M., Dughiero, F., Forzan, M., Rastrelli, M., Rossi, C.R., Sieni, E., Tosi, A.L.: Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens. Med. Biol. Eng. Comput. 54(5), 773–787 (2015). https://doi.org/10.1007/s11517-015-1368-6

    Article  Google Scholar 

  14. Tosi, A.L., Campana, L.G., Dughiero, F., Forzan, M., Rastrelli, M., Sieni, E., Rossi, C.R.: Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance. Med. Biol. Eng. Comput. 55(7), 1097–1108 (2016). https://doi.org/10.1007/s11517-016-1573-y

    Article  Google Scholar 

  15. Brun, P., Dettin, M., Campana, L.G., Dughiero, F., Sgarbossa, P., Bernardello, C., Tosi, A.L., Zamuner, A., Sieni, E.: Cell-seeded 3D scaffolds as in vitro models for electroporation. Bioelectrochemistry 125, 15–24 (2019). https://doi.org/10.1016/j.bioelechem.2018.08.006

    Article  Google Scholar 

  16. Mir, L.M., Gehl, J., Sersa, G., Collins, C.G., Garbay, J.-R., Billard, V., Geertsen, P.F., Rudolf, Z., O’Sullivan, G.C., Marty, M.: Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. EJC Suppl. 4, 14–25 (2006)

    Article  Google Scholar 

  17. Ongaro, A., Campana, L.G., De Mattei, M., Dughiero, F., Forzan, M., Pellati, A., Rossi, C.R., Sieni, E.: Evaluation of the electroporation efficiency of a grid electrode for electrochemotherapy: from numerical model to in vitro tests. Technol. Cancer Res. Treat. 15, 296–307 (2016). https://doi.org/10.1177/1533034615582350

    Article  Google Scholar 

  18. Pavlin, M., Kandušer, M., Reberšek, M., Pucihar, G., Hart, F.X., Magjarevićcacute, R., Miklavčič, D.: Effect of cell electroporation on the conductivity of a cell suspension. Biophys. J. 88, 4378–4390 (2005). https://doi.org/10.1529/biophysj.104.048975

  19. Silve, A., Leray, I., Poignard, C., Mir, L.M.: Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses. Sci. Rep. 6, 19957 (2016). https://doi.org/10.1038/srep19957

    Article  Google Scholar 

  20. Dermol, J., Pakhomova, O.N., Pakhomov, A.G., Miklavčič, D.: Cell electrosensitization exists only in certain electroporation buffers. PLoS ONE 11, e0159434 (2016). https://doi.org/10.1371/journal.pone.0159434

    Article  Google Scholar 

  21. Ivorra, A., Villemejane, J., Mir, L.: Electrical modeling of the influence of medium conductivity on electroporation. Phys. Chem. Chem. Phys. 12, 10055–10064 (2010). https://doi.org/10.1039/c004419a

    Article  Google Scholar 

  22. Pucihar, G., Kotnik, T., Kandušer, M., Miklavčič, D.: The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54, 107–115 (2001). https://doi.org/10.1016/S1567-5394(01)00117-7

    Article  Google Scholar 

  23. Elia, S., Lamberti, P., Tucci, V.: Influence of uncertain electrical properties on the conditions for the onset of electroporation in an eukaryotic cell. IEEE Trans. Nanobiosci. 9, 204–212 (2010). https://doi.org/10.1109/TNB.2010.2050599

  24. Stratton, J.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    Google Scholar 

  25. Di Barba, P., Savini, A., Wiak, S.: Field Models in Electricity and Magnetism. Springer, Dordrecht (2008)

    Google Scholar 

  26. Kotnik, T., Miklavcic, D.: Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 90, 480–491 (2006). https://doi.org/10.1529/biophysj.105.070771

  27. Kotnik, T., Miklavčič, D.: Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79, 670–679 (2000). https://doi.org/10.1016/S0006-3495(00)76325-9

    Article  Google Scholar 

  28. Markelc, B., Bellard, E., Sersa, G., Jesenko, T., Pelofy, S., Teissié, J., Frangez, R., Rols, M.-P., Cemazar, M., Golzio, M.: Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions. J. Control. Release 276, 30–41 (2018). https://doi.org/10.1016/j.jconrel.2018.02.032

    Article  Google Scholar 

  29. Auvinen, P., Tammi, R., Parkkinen, J., Tammi, M., Ågren, U., Johansson, R., Hirvikoski, P., Eskelinen, M., Kosma, V.-M.: Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol. 156, 529–536 (2000). https://doi.org/10.1016/S0002-9440(10)64757-8

    Article  Google Scholar 

  30. Kikkawa, Y., Hozumi, K., Katagiri, F., Nomizu, M., Kleinman, H.K., Koblinski, J.E.: Laminin-111-derived peptides and cancer. Cell Adhes. Migr. 7, 150–159 (2013). https://doi.org/10.4161/cam.22827

    Article  Google Scholar 

  31. Insua-Rodríguez, J., Oskarsson, T.: The extracellular matrix in breast cancer. Adv. Drug Deliv. Rev. 97, 41–55 (2016). https://doi.org/10.1016/j.addr.2015.12.017

    Article  Google Scholar 

  32. Andreuccetti, D., Fossi, R.: Dielectric properties of human tissues: definitions, parametric model, computing codes IROE Technical report N.TR/ICEMM/13.00. http://niremf.ifac.cnr.it/tissprop/document/tissprop.pdf

  33. Štancl, J., Skočilas, J., Landfeld, A., Žitný, R., Houška, M.: Electrical and thermodynamic properties of a collagen solution. Acta Polytechnica 57 (2017). https://doi.org/10.14311/AP.2017.57.0229

Download references

Acknowledgments

Authors are also grateful to Igea spa, Carpi (MO) Italy for the pulse generator loan. The research was made possible thanks to the networking of the ISEBTT, International Society for Electroporation-Based Technology and Treatments (http://www.electroporation.net/) and COST action CA16119 - In vitro 3-D total cell guidance and fitness (http://cost-cellfit.eu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Sieni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazzolo, B., Conconi, M.T., Dettin, M., Zamuner, A., Campana, L.G., Sieni, E. (2021). Influence of Extracellular Environment on Electroporation Efficiency. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds) 8th European Medical and Biological Engineering Conference. EMBEC 2020. IFMBE Proceedings, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-64610-3_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64610-3_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64609-7

  • Online ISBN: 978-3-030-64610-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics