Skip to main content

Catalytic Conversion of Alcohols into Value-Added Products

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Alcohols belong to an important class of oxygenates, containing highly versatile hydroxyl (–OH) functional group(s) which are capable of undergoing a variety of chemical transformations, yielding fuels, fuel additives and a wide range of highly useful chemicals and chemical intermediates. Production of methanol, bioethanol and other higher alcohols in plenty, through various biomass conversion processes, has rendered them renewable and carbon-neutral in character and highly useful as platform chemicals. Novel catalytic processes for the conversion of aliphatic C1-C4 alcohols to C2-C4 olefins/building block chemicals, like ethylene, propylene, isobutene and butadiene, and oxygenates like aldehydes, esters and ethers and gasoline range hydrocarbons have been developed. Catalytic coupling of ethanol to higher alcohols followed by dehydration, oligomerization and hydrogenation to yield jet fuel and middle distillates results in the production of low-carbon renewable/sustainable fuels. Steam reforming and aqueous phase reforming of alcohols to produce hydrogen is yet another process option available for the transformation of alcohols that has several advantages over conventional, non-renewable methane steam reforming. Significant progress has been reported in the catalytic α-alkylation of ketone esters and amides with alcohols and aldol condensation of alcohols with other oxygenates like acetone/ketones. Catalytic upgradation of biomass-derived glycerol, furfuryl alcohol and sugar-derived alcohols like sorbitol, mannitol and xylitol results in a range of value-added products. The origin of such processes, process chemistry, development of catalysts, recent advances and future trends are covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  Google Scholar 

  2. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

    Article  CAS  Google Scholar 

  3. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of bi omass to biofuels. Green Chem 12:1493–1513. https://doi.org/10.1039/C004654J

    Article  CAS  Google Scholar 

  4. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450. https://doi.org/10.1126/science.1111166

    Article  CAS  Google Scholar 

  5. Climent MJ, Corma A, Iborra S (2011) Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem 13:520–540. https://doi.org/10.1039/C0GC00639D

    Article  CAS  Google Scholar 

  6. Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0

    Article  Google Scholar 

  7. Fang Z, Smith RL Jr, Qi X (2019) Resources in biomass and biorefineries, vol 9. Springer, New York, NY

    Google Scholar 

  8. Zhou C-H, Xia X, Lin CX, Tonga DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemical and fuels. Chem Soc Rev 40:5588–5617. https://doi.org/10.1039/C1CS15124J

    Article  CAS  Google Scholar 

  9. Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145:138–151. https://doi.org/10.1016/j.cattod.2008.04.017

    Article  CAS  Google Scholar 

  10. Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges and future direction. Energy Fuel 20:1727–1737. https://doi.org/10.1021/ef060097w

    Article  CAS  Google Scholar 

  11. Pileidis FD, Titirici MM (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9:562–582. https://doi.org/10.1002/cssc.201501405

    Article  CAS  Google Scholar 

  12. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Env Sci 4:83–99. https://doi.org/10.1039/C0EE00436G

    Article  CAS  Google Scholar 

  13. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145. https://link.springer.com/article/10.1007/s00253-003-1537-7

    Google Scholar 

  14. Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products. Weinheim, Wiley-VCH Verlag GmbH &Co. K GaA

    Google Scholar 

  15. Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46:5056–5058. https://doi.org/10.1002/anie.200604514

    Article  CAS  Google Scholar 

  16. De Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Hofer R, Taherzadeh M, Nampoothiri M, Larroche C (eds) Industrial biorefineries and white biotechnology, 1st edn. Elsevier, Amsterdam, pp 3–33

    Chapter  Google Scholar 

  17. Bozell JJ (2010) Connecting biomass and petroleum processing with a chemical bridge. Science 329:522–523. https://doi.org/10.1126/science.1191662

    Article  CAS  Google Scholar 

  18. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstock for lignocellulosic biofuels. Science 329:790–791. https://doi.org/10.1126/science.1189268

    Article  CAS  Google Scholar 

  19. Kohli K, Prajapati R, Sharma BK (2019) Bio-based chemicals from renewable biomass for integrated biorefineries. Energies 12:233. https://doi.org/10.3390/en12020233

    Article  CAS  Google Scholar 

  20. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A et al (2004) Results of screening for potential candidates from sugars and synthesis gas. In: Werpy T, Petersen G (eds) Top value-added chemicals from biomass – vol. 1. Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, Washington, DC

    Google Scholar 

  21. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554. https://doi.org/10.1039/B922014C

    Article  CAS  Google Scholar 

  22. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558. https://doi.org/10.1039/C1CS15147A

    Article  CAS  Google Scholar 

  23. Langeveld H, Sanders J, Meeusen M (eds) (2010) The biobased economy: biofuels, materials and chemicals in the post-oil era. Earthscan, New York, NY

    Google Scholar 

  24. Sudhakar T, Tao L, Michael AG (2018) An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery, us environmental protection agency. Clean Technol. Environ Policy 20(7):1615–1630. https://doi.org/10.1007/s10098-018-1568-5

    Article  CAS  Google Scholar 

  25. Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels. A review. Renew Sust Energ Rev 15:4255–4273

    Article  CAS  Google Scholar 

  26. Quellette A, Rawn D (2014) Journal of organic chemistry – structure, mechanism and synthesis. Elsevier, Amsterdam

    Google Scholar 

  27. Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chemistry 1:32–58. https://doi.org/10.1016/j.chempr.2016.05.002

    Article  CAS  Google Scholar 

  28. Methanol Institute-Methanol Market Survey Asia (MMSA) (2020) World supply-demand summary, Jan 2020. Accessed 7 Feb 2020

    Google Scholar 

  29. Dalena F, Senatore A, Basile M, Knani S, Basile A, Iulianelli A (2018) Advances in methanol production and utilization, with particular emphasis toward hydrogen generation via membrane reactor technology. Membranes 8:98. https://doi.org/10.3390/membranes8040098

    Article  CAS  Google Scholar 

  30. Sheldon D (2017) Methanol production – a technical history. Johnson Matthey Technol Rev 61(3):172–182. https://doi.org/10.1595/205651317X695622

  31. Bertau M, Offermanns H, Plass L, Schmidt F, Wernicke H-J (2014) Methanol: the basic chemical and energy feedstock of the future. Asinger’s vision today. Springer, Berlin. https://doi.org/10.1007/978-3-642-39709-7

    Book  Google Scholar 

  32. Olah GA (2005) Angew Chem Int Ed 44(18):2636–2639. https://doi.org/10.1002/anie.200462121

    Article  CAS  Google Scholar 

  33. Olah GA, Goeppert A, Prakash GKS (2018) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim

    Book  Google Scholar 

  34. Roode-Gutzmer QI, Kaiser D, Bertau M (2019) Renewable methanol synthesis. Chem Bio Eng Rev 6:209–236. https://doi.org/10.1002/cben.201900012

    Article  CAS  Google Scholar 

  35. Hobson C, Marques C (2018) Renewable methanol report. Methanol Institute, Washington, DC. http://www.mefco2.eu/news/mapping-out-renewable-methanol-around-the-world.php

    Google Scholar 

  36. Straathof AJJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114(3):1871–1908. https://doi.org/10.1021/cr400309c

    Article  CAS  Google Scholar 

  37. Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32(8):1460–1475. https://doi.org/10.1016/j.biotechadv.2014.09.004

    Article  CAS  Google Scholar 

  38. Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, Lee EY (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24(12):1597–1605. https://doi.org/10.4014/jmb.1407.07070

    Article  CAS  Google Scholar 

  39. Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102(15):7349–7353. https://doi.org/10.1016/j.biortech.2011.04.096

    Article  CAS  Google Scholar 

  40. Chandran K (2012) Methods and systems for biologically producing methanol. WO 2012/078845 A1

    Google Scholar 

  41. Tyurin M, Kiriukhin M (2013) Selective methanol or formate production during continuous CO2 fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool. World J Microbiol Biotechnol 29(9):1611–1623. https://doi.org/10.1007/s11274-013-1324-2

    Article  CAS  Google Scholar 

  42. Johnson D (2012) Global methanol market review. http://www.ptq.pemex.com/productosyservicios/eventosdescargas/Documents/Foro%20PEMEX%20Petroqu%C3%ADmica/2012/PEMEX_DJohnson.pdf. Accessed 23 Mar 2016

    Google Scholar 

  43. Rosillo-Calle F, Walter A (2006) Global market for bioethanol: historical trends and future prospects. Energy Sustain Dev 10(1):20–32. https://doi.org/10.1016/s0973-0826(08)605049

    Article  Google Scholar 

  44. Kosaric N, Duvnjak Z, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D (2011) Ethanol. Ullmann’s encyclopedia of industrial chemistry. doi:https://doi.org/10.1002/14356007.a09_587.pu-2

  45. Mussatto SI, Dragone G, Guimaraes PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830. https://doi.org/10.1016/j.biotechadv.2010.07.001

    Article  CAS  Google Scholar 

  46. Demirbas¸ A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27(4):327–337. https://doi.org/10.1080/00908310390266643

    Article  CAS  Google Scholar 

  47. Ralph EH, Sims WM, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580. https://doi.org/10.1016/j.biortech.2009.11.046

    Article  CAS  Google Scholar 

  48. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Tech BioTech 56(2):174–187. https://doi.org/10.17113/ftb.56.02.18.5428

    Article  CAS  Google Scholar 

  49. Alalwan AA, Alminshid AH, Aljaafari HAS (2019) Promising evolution of biofuel generations. Subject review. Renew Energy Focus 28:127–139. https://doi.org/10.1016/j.ref.2018.12.006

    Article  Google Scholar 

  50. Abdullah B, Muhammad SAFS, Shokravic Z, Ismail S, Kassime KA, Mahmood AN, Azize MMA (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sust Energ Rev 107:37–50. https://doi.org/10.1016/j.rser.2019.02.018

    Article  Google Scholar 

  51. Li K, Liu S, Liu X (2014) An overview of algae bioethanol production. Int J Energy Res 38(8):965–977. https://doi.org/10.1002/er.3164

    Article  CAS  Google Scholar 

  52. Doutton JA. e-Education Institute, Penn State University, Pennsylvania

    Google Scholar 

  53. Rosales-Calderon O, Arantes V (2019) A review on commercial scale high value products that can be produced alongside cellulosic ethanol. Biotechnol Biofuels 12:240. https://doi.org/10.1186/s13068-019-1529-1

    Article  CAS  Google Scholar 

  54. Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34(13–14):1639–1651. https://doi.org/10.1080/09593330.2013.827747

    Article  CAS  Google Scholar 

  55. LanzaTech (2015) LanzaTech executive summary. http://www.lanzatech.com/wp-content/uploads/2015/03/2-pager-2015.pdf. Accessed 1 Feb 2017

    Google Scholar 

  56. Kuhz H, Kuenz A, Preuße U, Willke T, Vorlop (2017) K-D Products components. Alcohols Adv Biochem Eng Biotechnol 2017:1–34. https://doi.org/10.1007/10_2016_74

    Article  CAS  Google Scholar 

  57. Papa AJ (2011) Propanols. Ullmann’s encyclopedia of industrial chemistry. doi:https://doi.org/10.1002/14356007.a22_173.pub2

  58. Ammar EM, Wang Z, Yang ST (2013) Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Appl Microbiol Biotechnol 97(10):4677–4690. https://doi.org/10.1007/s00253-013-4861-6

    Article  CAS  Google Scholar 

  59. Choi YJ, Lee J, Jang YS, Lee SY (2014) Metabolic engineering of microorganisms for the production of higher alcohols. MBio 5(5):e01524–e01514. https://doi.org/10.1128/mBio.01524-14

    Article  CAS  Google Scholar 

  60. Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109(10):2437–2459. https://doi.org/10.1002/bit.24599

    Article  CAS  Google Scholar 

  61. Inokuma K, Liao JC, Okamoto M, Hanai T (2010) Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 110(6):696–701. https://doi.org/10.1016/j.jbiosc.2010.07.010

    Article  CAS  Google Scholar 

  62. Sada M et al (1981) US patent 4307257, 22 Dec 1981

    Google Scholar 

  63. Harvey BG, Meylemans HA (2011) The role of butanol in the development of sustainable fuel technologies. J Chem Technol Biotechnol 86:2–9. https://doi.org/10.1002/jctb.2540

    Article  CAS  Google Scholar 

  64. Xue C, Zhao XQ, Liu CG, Chen LJ, Bai FW (2013) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 31:1575–1584. https://doi.org/10.1016/j.biotechadv.2013.08.004

    Article  CAS  Google Scholar 

  65. Gautam M, Martin DW (2000) Combustion characteristics of higher-alcohol/gasoline blends. Proc Inst Mech Eng A J Power Energy 214:497–511. doi:10.1243%2F0957650001538047

    Article  Google Scholar 

  66. Thompson R, Behnam M, Swana J, Yang Y (2011) An analysis of net energy production and feed-stock availability for biobutanol and bioethanol. Bioresour Technol 102:2112–2117. https://doi.org/10.1016/j.biortech.2010.08.051

    Article  CAS  Google Scholar 

  67. Singh SB, Dhar A, Agarwal AK (2015) Technical feasibility study of butanol as gasoline blends for powering medium-duty transportation spark ignition engine. Renew Energy 76:706–716. https://doi.org/10.1016/j.renene.2014.11.095

    Article  CAS  Google Scholar 

  68. Derre P (2007) Biotechnol J Rep 2:1525–1534

    CAS  Google Scholar 

  69. Ndaba B, Chiyanzu I, Marx S (2015) n-Butanol derived from biochemical and chemical routes: a review. Biotechnol Rep 8:1–9. https://doi.org/10.1016/j.btre.2015.08.001

    Article  CAS  Google Scholar 

  70. n-Butanol market by application (butyl acrylate, butyl acetate, glycol ethers, direct solvents, plasticizers), and region (Asia Pacific, North America, Europe, Middle East & Africa, South America)—Global Forecast to 2022: a report (CH1543) 2018

    Google Scholar 

  71. Hahn HD, Dambkes G, Rupprich N, Bahl H, Frey GD (2013) Butanols. Ullmann’s encyclopedia of industrial chemistry. doi:10.1002/14356007.a04_463.pub3

    Google Scholar 

  72. Spivey JJ, Groppi G, Cristiani C, Forzatti P (1997) Preparation and characterization of hexaaluminate materials for high-temperature catalytic combustion. Catalysis 13:209. https://doi.org/10.1039/9781847553256

    Article  Google Scholar 

  73. Guerbet MCR (1899) Acad Sci Paris 128:1002–1004

    CAS  Google Scholar 

  74. Guerbet MCR (1909) Acad Sci Paris 149:129–132

    CAS  Google Scholar 

  75. Kozlowski J T, Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3:1588–1600. https://pubs.acs.org/doi/10.1021/cs400292f

    Google Scholar 

  76. Aitchison H, Wingad RL, Wass DF (2016) Homogeneous ethanol to butanol catalysis. ACS Catal Guerbet Renewed 6:7125–7132. https://doi.org/10.1021/acscatal.6b01883

    Article  CAS  Google Scholar 

  77. Wu X, Fang G, Tong Y, Jiang D, Liang Z, Leng W, Liu L, Tu P, Wang H, Ni J, Li X (2018) Catalytic upgrading of ethanol to n-butanol: progress in catalyst development. ChemSusChem 11:71–85. https://doi.org/10.1002/cssc.201701590

    Article  CAS  Google Scholar 

  78. Dowson GRM, Haddow MF, Lee J, Wingad RL, Wass DF (2013) Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-butanol. Angew Chem Int Ed 52:9005–9008. https://doi.org/10.1002/anie.201303723

    Article  CAS  Google Scholar 

  79. Jang YS, Malaviya A, Cho C, Lee J, Lee SY (2012) Butanol production from renewable biomass by Clostridia. Bioresour Technol 123:653–663. https://doi.org/10.1016/j.biortech.2012.07.104

    Article  CAS  Google Scholar 

  80. Garncarek Z, Kociolek-Balawejder E (2009) Biobutanol. Perspectives of the production development. Przem Chem 88(6):658–666

    CAS  Google Scholar 

  81. Li J, Baral N, Jha A (2014) Acetone–butanol–ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World J Microbiol Biotechnol 30(4):1145–1157. https://doi.org/10.1007/s11274-013-1542-7

    Article  CAS  Google Scholar 

  82. Jain S, Yadav MK, Kumar A (2014) In: Babu V, Thapliyal A, Patel GK (eds) Production of butanol: a biofuel in biofuels production. Scrivener Publishing LLC, Beverly, MA, pp 255–284

    Google Scholar 

  83. Rathour RK, Ahuja V, Bhatia RK, Bhatt AK (2018) Biobutanol: new era of biofuels. Int J Energy Res 2018:1–14. https://doi.org/10.1002/er.4180

    Article  Google Scholar 

  84. Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Hubert Antolak H, Kaminski ZJ, Witonska IA, Kregiel D (2019) Butanol synthesis routes for biofuel production: trends and perspectives. Materials 12:350. https://doi.org/10.3390/ma12030350

    Article  CAS  Google Scholar 

  85. Ezeji T, Groberg M, Qureshi N, Blaschek HP (2003) Continuous production of butanol from starch-based packing peanuts. Appl Biochem Biotechnol 105–108:375–382. https://doi.org/10.1385/abab:106:1-3:375

    Article  Google Scholar 

  86. https://www.plasticsinsight.com/resin-intelligence/resin-prices/mono-ethylene-glycolmeg. Accessed on 16th Feb 2020

    Google Scholar 

  87. Bio PET (2020) Market size, share, forecast, industry report. Plastics industry. Radiant Insights Inc, San Francisco, CA

    Google Scholar 

  88. Sullivan CJ, Anja K, Vorlop K, Dieter (2018) Propanediols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. https://doi.org/10.1002/14356007.a22_163.pub23

    Chapter  Google Scholar 

  89. Alain C, Gilles L (1989) Petrochemical processes. Volume 2: major oxygenated, chlorinated and nitrated derivatives. Editions Technip, New York, NY, p 26. ISBN:9782710805632

    Google Scholar 

  90. Feng J, Xu B (2014) Reaction mechanisms for the heterogeneous hydrogenolysis of biomass derived glycerol to propanediols. Prog React Kinet Mech 39:1–15. https://doi.org/10.3184/97809059274714x13874723178485

    Article  Google Scholar 

  91. Zheng Y, Chen X, Shen Y (2008) Commodity chemicals derived from glycerol, an Important biorefinery feedstock. Chem Rev 108:5253–5277. https://doi.org/10.1021/cr068216s

    Article  CAS  Google Scholar 

  92. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem 51:2564–2601. https://doi.org/10.1002/anie.201105125

    Article  CAS  Google Scholar 

  93. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14: 454–459. https://www.ncbi.nlm.nih.gov/pubmed/14580573

    Google Scholar 

  94. Saxena RK, Anand P, Saran S, Isar J, Agarwal L (2010) Microbial production and applications of 1,2-propanediol. Indian J Microbiol 50:2–11. https://doi.org/10.1007/s12088-010-0017-x

    Article  CAS  Google Scholar 

  95. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13. https://doi.org/10.1039/b710561d

    Article  CAS  Google Scholar 

  96. Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chemo selective catalytic conversion of glycerol as a bio-renewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549. https://doi.org/10.1039/b707343g

    Article  CAS  Google Scholar 

  97. Pagliaro M, Rossi M (2010) The future of glycerol, vol 2. RSC Green Chemistry Series Royal Society of Chemistry, London

    Google Scholar 

  98. Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Cat Sci Technol 1:179. https://doi.org/10.1039/c0cy00054j

    Article  CAS  Google Scholar 

  99. Lee CS, Aroua MK, Daud WMAW, Cognet P, Pe’re’s-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: conversion of bio-glycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:963–972. 10.1016/j.rser.2014.10.033

    Google Scholar 

  100. Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst. ChemSusChem 6(8):1345–1347. https://doi.org/10.1002/cssc.201300196

    Article  CAS  Google Scholar 

  101. Martin A, Armbruster U, Gandarias I, Arias PL (2013) Glycerol hydrogenolysis into propanediols using in situ generated hydrogen – a critical review. Eur J Lipid Sci Technol 115:9–27. https://doi.org/10.1002/ejlt.201200207

  102. Chaminand J, La D, Gallezot P, Marion P, Pinel C, Cc R (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6(8):359. https://doi.org/10.1039/b407378a

    Article  CAS  Google Scholar 

  103. Ji XJ, Huang H (2014) Bio-based butanediols production: the contributions of catalysis, metabolic engineering, and synthetic biology. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken, NJ, pp 261–288

    Chapter  Google Scholar 

  104. Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22(6):749–757. https://doi.org/10.1016/j.copbio.2011.05.005

    Article  CAS  Google Scholar 

  105. Grafje H, K€ornig W, Weitz HM, Reiß W, Steffan G, Diehl H, Bosche H, Schneider K, Kieczka H (2000) Butanediols, butenediol, and butynediol. In: Ullmann’s encyclopedia of industrial chemistry. https://doi.org/10.1002/14356007.a04_455

    Chapter  Google Scholar 

  106. Bartowsky EJ, Henschke PA (2004) The ‘buttery’ attribute of wine – diacetyl desirability, spoilage and beyond. Int J Food Microbiol 96(3):235–252. https://doi.org/10.1016/j.ijfoodmicro.2004.05.013

  107. Petrini P, Ponti SD, Fare S, Tanzi MC (1999) Polyurethane-maleamides for cardio-vascular applications: synthesis and properties. J Mater Sci Mater Med 10:711–714. https://doi.org/10.1023/A:1008970904334

    Article  CAS  Google Scholar 

  108. Myszkowski J, Zielinski AZ (1965) Synthe’se de la butyle’ne-chlorhydrine et sa conversion enme’thyle’thylce’tone, oxyde de butyle’ne et butyle’ne-glycol. Chim Ind 93:3

    Google Scholar 

  109. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol – current state and prospects. Biotechnol Adv 27:715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

  110. Harden A, Walpole GS (1906) Chemical action of Bacillus lactis aerogenes (Escherich) on glucose and mannitol: production of 2, 3-butyleneglycol and acetyl methyl carbinol. Proc Royal Soc B Bio 77:399–405. https://doi.org/10.1098/rspb.1906.0028

    Article  CAS  Google Scholar 

  111. Fulmer EI, Christensen LM, Kendali AR (1933) Production of 2,3-butylene glycol by fermentation. Ind Eng Chem 25:798–800. https://doi.org/10.1021/ie50283a019

    Article  CAS  Google Scholar 

  112. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the art review. Biotechnol Adv 29:351–364. https://doi.org/10.1016/j.biotechadv.2011.01.007

    Article  CAS  Google Scholar 

  113. Sampat BG (2011) 1,4-Butanediol: a techno-commercial profile. Chem Weekly 2011:205–211

    Google Scholar 

  114. Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112 (1333):30–35 https://www.genomatica.com/_uploads/pdfs/ISJ_markburke.pdf

    Google Scholar 

  115. Burk MJ, Van Dien SJ, Burgard AP, Niu W (2015) Composition and methods for the biosynthesis of 1,4-butanediol and its precursors. US 8969054 B2

    Google Scholar 

  116. Genomatica (2015) Commercial-scale production, customer validation, licenses. http://www.genomatica.com/products/genobdoprocess/. Accessed 14 Apr 2015

    Google Scholar 

  117. Dittmeyer R, Keim W, Kreysa G, Oberholz A (2005) Chem Tech Prozesse Prod 5:55–68. https://doc1.bibliothek.li/aao/FLMA135383.pdf

    Google Scholar 

  118. O’Lenick AJ (2001) Guerbet chemistry. J Surfactant Deterg 4:311–315. https://doi.org/10.1007/s11743-001-0185-1

    Article  Google Scholar 

  119. Ott J, Gronemann V, Pontzen F, Fiedler E, Grossmann G, Kersebohm DB, Weiss G, Witte C (2012) Methanol. Ullmann’s encyclopedia of industrial chemistry. doi:https://doi.org/10.1002/14356007.a16465.pub3

  120. Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84. https://doi.org/10.1080/15583720902834791

    Article  CAS  Google Scholar 

  121. Forestie’re A, Olivier-Bourbigou H, Saussine L (2009) Oligomerization of mono olefins by homogeneous catalysts. Oil Gas Sci Technol Rev l’IFP 64:649–667. https://doi.org/10.2516/ogst/2009027

    Article  CAS  Google Scholar 

  122. Olson ES, Sharma RK, Aulich TR (2004) Higher-alcohols biorefinery. Appl Biochem Biotechnol 113–116:913–932. https://doi.org/10.1007/978-1-59259-837-3_74

    Article  Google Scholar 

  123. Sun D, Sato S, Ueda W, Primo A, Garcia H, Corma A (2016) Production of C4 and C5 alcohols from biomass derived materials. https://doi.org/10.1039/C6GC00377J

  124. Luk HT, Mondelli C, CurullaFerre D, Stewart JA, Pe’rez-Ramı’rez J (2017) Status and prospects in higher alcohols synthesis from syngas. Chem Soc Rev 46:1358–1426. https://doi.org/10.1039/c6cs00324a

    Article  CAS  Google Scholar 

  125. Nexant Inc. (2015) Petrochemical market dynamics oxo alcohols. Nexant Inc., Louisville, CO

    Google Scholar 

  126. Lamsen EN, Atsumi S (2012) Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Front Microbiol 3:196. https://doi.org/10.3389/fmicb.2012.00196

    Article  Google Scholar 

  127. Zhao J, Lu C, Chen C-C, Yang S-T (2013) In: Yang S-T, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, 1st edn. John Wiley & Sons, Inc., pp 235–261

    Google Scholar 

  128. Diender M, Alfons JMS, Sousa DZ (2016) Biotechnol Biofuels 9:82. https://doi.org/10.1186/s13068-016-0495-0

    Article  CAS  Google Scholar 

  129. Polyols (sugar alcohols) – a global market overview industry experts. Report code: FB007, Jan 2017

    Google Scholar 

  130. Moon HJ, Jeya M, Kim IW, Lee JK (2010) Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol 86:1017–1025. https://doi.org/10.1007/s00253-010-2496-4

    Article  CAS  Google Scholar 

  131. Zhang J, Li J-BWS-B, Liu Y (2013) Advances in the catalytic production and utilization of sorbitol. Ind Eng Chem Res 52:11799–11815. https://doi.org/10.1021/ie4011854

    Article  CAS  Google Scholar 

  132. Ghosh S, Sudha ML (2012) A review on polyols: new frontiers for health-based bakery, products. Int J Food Sci Nutr 63:372–379. https://doi.org/10.3109/09637486.2011.627846

    Article  CAS  Google Scholar 

  133. Tathod A, Kane T, Sanil ES, Dhepe PL (2014) Solid base supported metal catalysts for the oxidation and hydrogenation of sugars. J Mol Catal A Chem 388-389:90–99. https://doi.org/10.1016/j.molcata.2013.09.014

    Article  CAS  Google Scholar 

  134. May A, Pastore GM, Park YK (1993) Microbial transformation of sucrose and glucose to erythritol, Biotechnol Lett, 15:383–388 https://link.springer.com/article/10.1007/BF00128281

    Google Scholar 

  135. Van der Klis F, Gootjes L, van Haveren J, van Es DS, Bitter JH (2015) Selective terminal C–C scission of C5-carbohydrates. Green Chem 17:3900–3909. https://doi.org/10.1039/C5GC01012H

    Article  CAS  Google Scholar 

  136. Zada B, Chen M, Chen C, Yan L, Xu Q, Li W, Guo Q, Fu Y (2017) Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem 60:853–859. https://doi.org/10.1007/s11426-017-9067-1

    Article  CAS  Google Scholar 

  137. Fabre L, Gallezot P, Perrard A (2001) Catal Commun 2:249–253. https://doi.org/10.1016/S1566-7367(01)00042-5

    Article  CAS  Google Scholar 

  138. Fabre L, Gallezot P, Perrard A (2002) Catalytic hydrogenation of arabinonic acid and lactones to arabitol. J Catal 208:247–254. https://doi.org/10.1006/jcat.2002.3567

    Article  CAS  Google Scholar 

  139. Dickson D, Hussain A, Kumpf B (2019) The future of petrochemicals: growth surrounded by uncertainty. Deloitte Consulting LLP, London. https://www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/the-future-of-petrochemicals.pdf. Accessed 21 Feb 2020

    Google Scholar 

  140. Vora BV, Marker TL, Barger PT, Nilsen HR, Kvisle S, Fuglerud T (1997) Economic route for natural gas conversion to ethylene and propylene. Stud Surf Sci Catal 107:87

    Article  CAS  Google Scholar 

  141. Kaiser S (1985) U.S. Patent 4,499,327

    Google Scholar 

  142. Kaiser SW (1985) Arab J Sci Eng 10:361

    CAS  Google Scholar 

  143. Lewis JMO (1998) In: Ward JW (ed) Catalysis. Elsevier, Amsterdam, p 199

    Google Scholar 

  144. Keil F (1999) Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater 29:49–66. https://doi.org/10.1016/S1387-1811(98)00320-5

    Article  CAS  Google Scholar 

  145. Gregor J, Vermeiren W (2003) Proceedings of the fifth EMEA petrochemicals technology conference, 25–26 Jun Paris, Jun 2003

    Google Scholar 

  146. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal Today 106:103–107. https://doi.org/10.1016/j.cattod.2005.07.178

    Article  CAS  Google Scholar 

  147. Yang M, Fan D, Wei Y, Tian P, Liu Z (2019) Recent progress in methanol- to-olefins (MTO) catalysts. Adv Mater 31(50):1902181. https://doi.org/10.1002/adma.201902181

    Article  CAS  Google Scholar 

  148. Gogate MR (2019) Methanol-to-olefins process technology: current status and future prospects. Pet Sci Technol 37(5):559–565. https://doi.org/10.1080/10916466.2018.1555589

    Article  CAS  Google Scholar 

  149. Dahl IM, Kolboe S (1996) On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol. J Catal 161(1):304–309. https://doi.org/10.1006/jcat.1996.0188

    Article  CAS  Google Scholar 

  150. Xu, S, Zhi, Y, Han, J, Zhang, W, Wu, X, Sun, T, Wei, Y, Liu, Z, Advances in catalysis for methanol-to-olefins conversion, Adv Catal, 61:38–118 doi:10.1016/bs.acat.2017.10.002 2017

    Google Scholar 

  151. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol-to-olefins (MTO): from fundamentals to commercialization. ACS Catal 5(3):1922–1938. https://doi.org/10.1021/acscatal.5b00007

    Article  CAS  Google Scholar 

  152. Chang CD (1984) Methanol conversion to light olefins. Catal Rev Sci Eng 26(3–4):323–344. https://doi.org/10.1080/01614948408064716

    Article  CAS  Google Scholar 

  153. Koempel, H, Liebner, W (2007) Lurgi’s methanol to propylene (MTP®), report on a successful commercialisation, in Natural gas conversion VIII F.B. Noronha, Schmal M, EF Sousa-Aguiar Amsterdam, Elsevier.V:262–267

    Google Scholar 

  154. Streb S, Göhna H (2000) Mega methanol. Paving the way for new downstream industries. World methanol conference, Copenhagen, 8–10 Nov 2000

    Google Scholar 

  155. Rothaemel M, Holtmann HD (2001) MTP, methanol to propylene – Lurgi’s way, DGMK-conference “creating value from light olefins – production and conversion, Hamburg, 10–12 Oct 2001

    Google Scholar 

  156. Rothaemel M (2016) Methanol-to-propylene (MTP®): a proven technology for on-purpose propylene production NGCS 11 conference, Tromso, Norway, 6–9 Jun. doi:10.13140/RG.2.2.31772.49283

    Google Scholar 

  157. Jasper S, Mahmoud M, El-Halwagi A (2015) Techno-economic comparison between two methanol-to-propylene processes. PRO 3:684–698. https://doi.org/10.3390/pr3030684

    Article  CAS  Google Scholar 

  158. Amghizar I, Laurien A, Vandewalle KM, Van Geem Guy MB (2017) New trends in olefin production. Engineering 3:171–178. https://doi.org/10.1016/J.ENG.2017.02.006

    Article  CAS  Google Scholar 

  159. Adkins H, Perkins PP (1925) Dehydration of alcohol over alumina. J Am Chem Soc 47:1163–1167. https://doi.org/10.1021/ja01681a036

    Article  CAS  Google Scholar 

  160. Kochar NK, Merims R, Padia AS (1981) Ethylene from ethanol. Chem Eng Prog 6:66–70

    Google Scholar 

  161. Fathi-Afshar F, Rudd DF (1980) Biomass ethanol as a chemical feedstock in the United States. Biotechnol Bioeng XXII:677–679

    Article  Google Scholar 

  162. Fan D, Dai D-J, Wu H-S (2013) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6:101–115. https://doi.org/10.3390/ma6010101

    Article  CAS  Google Scholar 

  163. Tsao U, Zasloff H.B (1979) Production of ethylene from ethanol, US patent, 4134926A

    Google Scholar 

  164. Mohsenzadeh A, Zamani A, Mohammad TJ (2017) Bio-ethylene production from ethanol: a review and techno-economical evaluation. Chem Bio Eng Rev 4:1–18. https://doi.org/10.1002/cben.201600025

    Article  Google Scholar 

  165. Hulea V (2018) Toward platform chemicals from bio-based ethylene: heterogeneous catalysts and processes. ACS Catal 8:3263–−327. https://doi.org/10.1021/acscatal.7b04294

    Article  CAS  Google Scholar 

  166. Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4:1078–1090. https://doi.org/10.1021/cs4011343

    Article  CAS  Google Scholar 

  167. Al-Ali AlMa’adeed M, Krupa I (2016) Polyolefin compounds and materials: fundamentals and industrial applications. Springer, Berlin

    Book  Google Scholar 

  168. Al-Jarallah AM, Anabtawi JA, Siddiqui MAB, Aitani AM, Alsa’doun AW (1992) Part 1 dimerization of ethylene to butene-1. Catal Today 14:1–−121. https://doi.org/10.1016/0920-5861(92)80128-A

    Article  Google Scholar 

  169. McGuinness DS (2011) Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. Chem Rev 111:2321–2341. https://doi.org/10.1021/cr100217q

    Article  CAS  Google Scholar 

  170. Olivier-Bourbigou H, Forestière A, Saussine L, Magna L, Favre F, Hugues F (2010) Olefin oligomerization for the production of fuels and petrochemicals. Oil Gas Eur Mag, 36:97−102. https://www.osti.gov/etdeweb/biblio/21327984

    Google Scholar 

  171. Svejda SA, Brookhart M (1999) Ethylene oligomerization and propylene dimerization using cationic (α-diimine) nickel(II) catalysts. Organometallics 18:65–74. https://doi.org/10.1021/om980736t

    Article  CAS  Google Scholar 

  172. Finiels A, Fajula F, Hulea V (2014) Nickel-based solid catalysts for ethylene oligomerization. A review. Cat Sci Technol 4:2412–2426. https://doi.org/10.1039/C4CY00305E

    Article  CAS  Google Scholar 

  173. Skupinska J (1991) Oligomerization of alpha-olefins to higher oligomers. Chem Rev 91:613–648. https://doi.org/10.1021/cr00004a007

    Article  CAS  Google Scholar 

  174. Andrei RD, Popa MI, Fajula F, Hulea V (2015) Heterogeneous oligomerization of ethylene over highly active and stable Ni-AlSBA-15 mesoporous catalysts. J Catal 323:76–−84. https://doi.org/10.1016/j.jcat.2014.12.027

    Article  CAS  Google Scholar 

  175. Agirrezabal-Telleria I, Iglesia E (2017) Stabilization of active, selective, and regenerable Ni-based dimerization catalysts by condensation of ethene within ordered mesopores. J Catal 352:505–514. https://doi.org/10.1016/j.jcat.2017.06.025

    Article  CAS  Google Scholar 

  176. Mol JC (2004) Industrial applications of olefin metathesis. J Mol Catal A Chem 213:39–−45. https://doi.org/10.1016/j.molcata.2003.10.049

    Article  CAS  Google Scholar 

  177. Lwin S, Wachs IE (2014) Olefin metathesis by supported metal oxide catalysts. ACS Catal 4:2505–2520. https://doi.org/10.1021/cs500528h

    Article  CAS  Google Scholar 

  178. Andrei RD, Popa MI, Cammarano C, Hulea V (2016) Nickel and molybdenum containing mesoporous catalysts for ethylene oligomerization and metathesis. New J Chem 40:4146–4152. https://doi.org/10.1039/C5NJ02586A

    Article  CAS  Google Scholar 

  179. Andrei RD, Popa MI, Fajula F, Cammarano C, AlKhudhair A, Bouchmella K, Mutin PH, Hulea V (2015) Ethylene to propylene by one-pot catalytic cascade reactions. ACS Catal 5:2774–2777. https://doi.org/10.1021/acscatal.5b00383

    Article  CAS  Google Scholar 

  180. Lin B, Zhang Q, Wang Y (2009) Catalytic conversion of ethylene to propylene and butenes over H-ZSM-5. Ind Eng Chem Res 48:10788−10795. https://doi.org/10.1021/ie901227p

    Article  CAS  Google Scholar 

  181. Oikawa H, Shibata Y, Inazu K, Iwase Y, Murai K, Hyodo S, Kobayashi G, Baba T (2006) Highly selective conversion of ethylene to propene over SAPO-34 as a solid acid catalyst. Appl Catal A 312:181–185. https://doi.org/10.1016/j.apcata.2006.06.045

    Article  CAS  Google Scholar 

  182. Song ZX, Takahashi A, Mimura N, Fujitani T (2009) Production of propylene from ethanol over ZSM-5 zeolites. Catal Lett 131:364–369. https://doi.org/10.1007/s10562-009-0071-3

    Article  CAS  Google Scholar 

  183. Mizuno S, Kurosawa M, Tanaka M, Iwamoto M (2012) One-path and selective conversion ethanol to propene on scandium-modified indium oxide catalysts. Chem Lett 41:892–894. https://doi.org/10.1246/cl.2012.892

    Article  CAS  Google Scholar 

  184. Iwamoto M (2011) One step formation of propene from ethene or ethanol through metathesis on nickel ion-loaded silica. Molecules 16:7844–7863. https://doi.org/10.3390/molecules16097844

    Article  CAS  Google Scholar 

  185. Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, Shen WJ, Imamura S (2005) Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl Catal A 2005(279):273–277. https://doi.org/10.1016/j.apcata.2004.10.035

    Article  CAS  Google Scholar 

  186. Murthy RS, Patnaik P, Sidheswaran P, Jayamani M (1988) Conversion of ethanol to acetone over promoted iron oxide catalysis. J Catal 109:298–302. https://doi.org/10.1016/0021-9517(88)90212-6

    Article  CAS  Google Scholar 

  187. Nakajima T, Nameta H, Mishima S, Matsuzaki I, Tanabe KJ (1994) A highly active and highly selective oxide catalyst for the conversion of ethanol to acetone in the presence of water vapour. Mater Chem 4:853–−858. https://doi.org/10.1039/JM9940400853

    Article  CAS  Google Scholar 

  188. Bussi J, Parodi S, Irigaray B, Kieffer R (1998) Catalytic transformation of ethanol into Acetone using copper pyrochlore catalysts. Appl Catal A 172:117–129. https://doi.org/10.1016/S0926-860X(98)00106-9

    Article  CAS  Google Scholar 

  189. Xu T, Munson EJ, Haw JF (1994) Toward a systematic chemistry of organic reactions in zeolites: in situ NMR studies of ketones. J Am Chem Soc 116:1962–1972. https://doi.org/10.1021/ja00084a041

    Article  CAS  Google Scholar 

  190. Zaki MI, Hasan MA, Pasupulety L (2001) Surface reactions of acetone on Al2O3, TiO2, ZrO2, and CeO: IR spectroscopic assessment of impacts of the surface acid−base properties. Langmuir 17:768–774. https://doi.org/10.1021/la000976p

    Article  CAS  Google Scholar 

  191. Panov AG, Fripiat JJ (1998) Acetone condensation reaction on acid catalysts. J Catal 178:188–197. https://doi.org/10.1006/jcat.1998.2142

    Article  CAS  Google Scholar 

  192. Hutchings GJ, Johnston P, Lee DF, Warwick A, Williams CD, Wilkinson M (1994) The conversion of methanol and other O-compounds to hydrocarbons over zeolite β. J Catal 147:177–185. https://doi.org/10.1006/jcat.1994.1128

    Article  CAS  Google Scholar 

  193. Masuda T, Fujikata Y, Mukai SR, Hashimoto K (1998) Changes in catalytic activity of MFI-type zeolites caused by dealumination in a steam atmosphere. Appl Catal A 172:73–83. https://doi.org/10.1016/S0926-860X(98)00120-3

    Article  CAS  Google Scholar 

  194. Zhu KK, Sun JM, Liu J, Wang LQ, Wan HY, Hu JZ, Wang Y, Peden CHF, Nie ZM (2011) Solvent evaporation assisted preparation of oriented nanocrystalline mesoporous MFI zeolites. ACS Catal 1:682–−690. https://doi.org/10.1021/cs200085e

    Article  CAS  Google Scholar 

  195. Zhu KK, Sun JM, Zhang H, Liu J, Wang Y (2012) J Nat Gas Chem 21:215–−232

    Article  CAS  Google Scholar 

  196. Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CHF, Wang YJ (2011) Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites. J Am Chem Soc 133:11096–11099. https://doi.org/10.1021/ja204235v

    Article  CAS  Google Scholar 

  197. Liu C, Sun J, Smith C, Wang Y (2013) A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. Appl Catal A 467:91–97. https://doi.org/10.1016/j.apcata.2013.07.011

    Article  CAS  Google Scholar 

  198. Global Butadiene Market Overview (2020) Prismane consulting. https://www.openpr.com/news/1831666/global-butadiene-market-overview. Accessed 25 Feb 2020

    Google Scholar 

  199. Pomalaza G, Capron M, Ordomsky V, Dumeignil V (2016) Recent breakthroughs in the conversion of ethanol to butadiene. Catalysts 6:203. https://doi.org/10.3390/catal6120203

    Article  CAS  Google Scholar 

  200. Shylesh S, Gokhale AA, Scown CD, Kim D, Christopher R, Ho CR, Bell AT (2016) From sugars to wheels: the conversion of ethanol to 1,3-butadiene over metal-promoted magnesia-silicate, catalysts. ChemSusChem 9:1462–1472. https://doi.org/10.1002/cssc.201600195

    Article  CAS  Google Scholar 

  201. Lebedev SV (1929) FR 665917

    Google Scholar 

  202. Lebedev SV (1930) GB 331482

    Google Scholar 

  203. Lebedev SV (1933) Zhurnal Obshchei Khimii 3:698

    Google Scholar 

  204. Ostromislenskiy J (1915) J Russ Phys Chem Soc 47:1472–1506

    Google Scholar 

  205. Jonathan B, Ross F, Philip L, Peter T (2012) Two-step production 1,3-butadiene from ethanol. Senior Design Rep (CBE) 42. http://repository.upenn.edu/cbe_sdr/42

    Google Scholar 

  206. Ezinkwo GO, Tretyakov VP, Aliyu A, Ilolov AM (2014) Fundamental issues of catalytic conversion of bio-ethanol into butadiene. Chem Bio Eng Rev 1:194–203. https://doi.org/10.1002/cben.201400007

    Article  CAS  Google Scholar 

  207. Makshina EV, Dusselier M, Janssens W, Degrève J, Jacobs PA, Sels BF (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43:7917–7953. https://doi.org/10.1039/C4CS00105B

    Article  CAS  Google Scholar 

  208. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chemo catalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6:1595–1614. https://doi.org/10.1002/cssc.201300214

    Article  CAS  Google Scholar 

  209. Jones M (2014) Catalytic transformation of ethanol into 1,3-butadiene. Chem Cent J 8:53. https://doi.org/10.1186/s13065-014-0053-4

    Article  CAS  Google Scholar 

  210. Jones M, Keir C, Iulio C, Robertson R, Williams C, Apperley D (2011) Investigations into the conversion of ethanol into 1,3-butadiene. Cat Sci Technol 1:267–272. https://doi.org/10.1039/C0CY00081G

    Article  CAS  Google Scholar 

  211. Kagan MY, Lyubarskii GD, Podurovskaya OM, Izv Akad (1947) Nauk SSSR, Ser Khim, pp 173–181

    Google Scholar 

  212. Vinogradova OM, Keier NP, Roginskii SZ (1957) Dokl. Akad Nauk SSSR 112:1075–1078

    CAS  Google Scholar 

  213. Toussaint WJ, Dunn JT (1947) US 2,421,361

    Google Scholar 

  214. Toussaint W.J, Dunn J. T, Jackson D. R (1947) Ind Eng Chem, 39, 120–125. https://pubs.acs.org/doi/pdf/10.1021/ie50446a010

    Google Scholar 

  215. Delacaillerie JBD, Gruver V, Fripiat JJ (1995) Modification of the surface properties of natural phyllosilicate sepiolite by secondary isomorphic substitution. J Catal 151:420–430. https://doi.org/10.1006/jcat.1995.1044

    Article  Google Scholar 

  216. Gruver V, Sun A, Fripiat J. J, (1995) Catalytic properties of aluminated sepiolite in ethanol conversion. Catal Lett 34:359–364. https://link.springer.com/article/10.1007/BF00806885

    Google Scholar 

  217. Chieregato A, Ochoa JV, Cavani F (2016) Olefins from biomass. In: Chemicals and fuels from bio-based building blocks. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–32

    Google Scholar 

  218. Natta G, Rigamonti R (1947) Chim Ind 29:95

    Google Scholar 

  219. Corson, B. B, Jones H.E, Welling C.E, Hinckley J.A, Stahly E.E (1950) Butadiene from ethyl alcohol, Ind Eng Chem, 42:359. https://pubs.acs.org/doi/pdf/10.1021/ie50482a039

    Google Scholar 

  220. Kitayama Y, Michishita A (1981) Catalytic activity of fibrous clay mineral sepiolite for butadiene formation from ethanol. J Chem Soc Chem Commun 9:401–402. https://doi.org/10.1039/C39810000401

    Article  Google Scholar 

  221. Kitayama Y, Satoh M, Kodama, T (1996) Preparation of large surface area nickel magnesium silicate and its catalytic activity for conversion of ethanol into buta-1,3-diene Catal Lett36:95 https://link.springer.com/article/10.1007/BF00807211

    Google Scholar 

  222. Ohnishi R, Akimoto T, Tanabe K (1985) Pronounced catalytic activity and selectivity of MgO–SiO2–Na2O for synthesis of buta-1,3-diene from ethanol. J Chem Soc Chem Commun 22:1613–1614. https://doi.org/10.1039/C39850001613

    Article  Google Scholar 

  223. Kvisle S, Aguero A, Sneeden RPA (1988) Transformation of ethanol into 1,3-butadiene over magnesium oxide/silica catalysts. Appl Catal 43:117–131. https://doi.org/10.1016/S0166-9834(00)80905-7

    Article  CAS  Google Scholar 

  224. Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198:338–344. https://doi.org/10.1016/j.cattod.2012.05.031

    Article  CAS  Google Scholar 

  225. Bhattacharyya, S, K, Ganguly, N. D (1962) One-step catalytic conversion of ethanol to butadiene in the fixed bed. II binary- and ternary-oxide catalysts J Appl Chem, 12:105–110. https://doi.org/10.1002/jctb.5010120302

  226. Bhattacharyya, S. K, Avasthi, B. N (1963) One-step catalytic conversion of ethanol to Butadiene in a fluidized bed, Ind Eng Chem Process Des Dev, 2, 45–51. https://pubs.acs.org/doi/pdf/10.1021/i260005a010

    Google Scholar 

  227. Chung SH, Angelici C, Hinterding SOM, Weingarth M, Baldus M, Houben K, Weckhuysen M, Bruijnincx PCA (2016) On the role of magnesium silicates in wet-kneaded silica-magnesia catalysts for the Lebedev ethanol-to-butadiene process. ACS Catal 6:4034–4045. https://doi.org/10.1021/acscatal.5b02972

    Article  CAS  Google Scholar 

  228. Angelici C, Velthoen MEZ, Weckhuyse BM, Bruijnincx PCA (2015) Influence of acid– base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2 – MgO materials. Cat Sci Technol 5:2869–2879. https://doi.org/10.1039/C5CY00200A

    Article  CAS  Google Scholar 

  229. Patel AD, Meesters K, den Uil H, de Jong E, Blok K, Patel MK (2012) Sustainability assessment of novel chemical processes at early stage: application to biobased processes. Energy Environ Sci 5:8430. https://doi.org/10.1039/c2ee21581k

    Article  CAS  Google Scholar 

  230. Chang CD, Silvestri AJ (1977) The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259

    Article  CAS  Google Scholar 

  231. Derouane EG, Nagy JB, Dejaifve P, Van hoof JHC, Ben P, Spekman BP, Vedrine JC, Naccache C (1978) Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite. J Catal 53:40–55. https://doi.org/10.1016/0021-9517(78)90006-4

    Article  CAS  Google Scholar 

  232. Chang CD, Lang W, Smith R (1979) The conversion of methanol and other O- compounds to hydrocarbons over zeolite catalysts: II. Pressure effects. J Catal 56:69–173. https://doi.org/10.1016/0021-9517(79)90103-9

    Article  Google Scholar 

  233. Chang, C. D, James, C.W, Kuo, J.C.W, Lang, W.H, Solomon M, Jacob, S.M, Wise, J.J. Silvestri, A. J, (1978) Process studies on the conversion of methanol to gasoline, Ind Eng Chem Process Des Dev, 17, 255–260. https://pubs.acs.org/doi/pdf/10.1021/i260067a008

    Google Scholar 

  234. Yurchak S (1988) Development of Mobil’s fixed-bed methanol-to-gasoline (MTG) process. Stud Surf Sci Catal 36:251–272. https://doi.org/10.1016/S0167-2991(09)60521-8

    Article  CAS  Google Scholar 

  235. Tabak S, Yurchak S (1990) Conversion of methanol over ZSM-5 to fuels and chemicals. Catal Today 6:307–327. https://doi.org/10.1016/0920-5861(90)85007-B

    Article  CAS  Google Scholar 

  236. Tabak S, Heinritz-Adrian M, Brandl A, McGihon R, Brandl A (2008) An alternative route for coal to liquid fuel-applying the exxon mobil methanol to gasoline (MTG) process, gasification technologies conference, 5–8 Oct, Washington, DC

    Google Scholar 

  237. Helton T, Hindman M (2014) Methanol to gasoline technology – an alternative for liquid fuel production-GTL technology forum, Texas, USA, 30–31 Jul 2014

    Google Scholar 

  238. Udessen H (2013) TIGAS—Topsoe improved gasoline synthesis, 16th IMPCA-2013 Asian methanol conference, 30 Oct to 1 Nov 2013

    Google Scholar 

  239. Gal E, Fang H, Qin H, Boyajian G, Li N (2015) Comparison of STG+ with other GTL Technologies. PGE_White-paper-GTL-Comparison-V32. www.primusge.com www.chemwinfo.com. Accessed 29 Feb 2020

    Google Scholar 

  240. ID:MRFR/CnM/5385-HCR-March 2020. https://www.marketresearchfuture.com/reports/ethanol-market-7304. Accessed 1 Mar 2020

    Google Scholar 

  241. Eagan, N. M, Kumbhalkar M.D, Buchanan, J. S, Dumesic, J. A, Huber, G.W (2019) Chemistries and processes for the conversion of ethanol into middle distillate fuels, Nat Rev Chem, 3, 223–249. https://www.nature.com/articles/s41570–019–0084-4

    Google Scholar 

  242. Johansson R, Hruby SL, Rass-Hansen J, Christensen CH (2009) The hydrocarbon pool in ethanol-to-gasoline over HZSM-5 catalysts. Catal Lett 127:127–132. https://doi.org/10.1007/s10562-008-9711-2

    Article  CAS  Google Scholar 

  243. Aguayo AT, Gayubo AG, Atutxa A, Olazar M, Bilbao J (2002) Kinetic Modelling of the Transformation of Aqueous Ethanol into Hydrocarbons on a HZSM-5 Zeolite. J Ind Eng Chem Res 41:4216–−4224. https://doi.org/10.1021/ie001115e

    Article  CAS  Google Scholar 

  244. Costa E, Uguina A, Aguado J, Hernandez PJ (1985) Ethanol to gasoline process: effect of variables, mechanism, and kinetics. Ind Eng Chem Process Des Dev 1985(24):239–244. https://doi.org/10.1021/i200029a003

    Article  Google Scholar 

  245. Talukdar AK, Bhattacharyya KG, Sivasanker S (1997) HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons. Appl Catal A 148:357–−371. https://doi.org/10.1016/S0926-860X(96)00240-2

    Article  CAS  Google Scholar 

  246. Madeira FF, Ben Tayeb K, Pinard L, Vezin H, Maury S, Cadran N (2012) Ethanol Transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Appl Catal A 443:171–−180. https://doi.org/10.1016/j.apcata.2012.07.037

    Article  CAS  Google Scholar 

  247. Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J (2010) Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons. Fuel 89:3365–−3372. https://doi.org/10.1016/j.fuel.2010.03.002

    Article  CAS  Google Scholar 

  248. Saha SK, Sivasanker S (1992) Influence of Zn- and Ga-doping on the conversion of ethanol to hydrocarbons over ZSM-5. Catal Lett 15:413–418. https://doi.org/10.1007/BF00769166

    Article  CAS  Google Scholar 

  249. Tynjala P, Pakkanen TT, Mustamaki S (1998) Modification of ZSM-5 Zeolite with Trimethyl Phosphite. 2. Catalytic Properties in the Conversion of C1−C4 Alcohols. J Phys Chem B 102:5280–5286. https://doi.org/10.1021/jp9806720

    Article  Google Scholar 

  250. Viswanadham N, Saxena SK, Kumar J, Sreenivasulu P, Nandan D (2012) Catalytic performance of nano crystalline H-ZSM-5 in ethanol to gasoline (ETG) reaction. Fuel 95:298–304. https://doi.org/10.1016/j.fuel.2011.08.058

    Article  CAS  Google Scholar 

  251. https://www.maritime-executive.com/article/transport-uses-25-percent-of-world-energy. Accessed 6 Mar 2020

    Google Scholar 

  252. International energy outlook-2016 DOE/EIA-0484(2016) I May 2016 www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf

    Google Scholar 

  253. Global bioenergy statistics-2019, World Biofuel Association, p 12

    Google Scholar 

  254. Wei-Cheng W, Ling T (2016) Bio-jet fuel conversion technologies. Renew Sust Energ Rev 53:801–822. https://doi.org/10.1016/j.rser.2015.09.016

    Article  CAS  Google Scholar 

  255. US Energy Information Administration (2015) The flight paths for biojet fuel. US Energy Information Administration, Washington, DC, p 20585. https://www.eia.gov/workingpapers/pdf/flightpaths_biojetffuel.pdf

    Google Scholar 

  256. Han GB, Jang JM, Hwei-Ahn M, Jung BH (2019) Recent application of bio-alcohol: bio-jet fuel. Inetch Open. https://doi.org/10.5772/intechopen.89719

  257. Harmon L, Hallen R, Lilga MA, Heijstra B, Palou-Rivera I, Handler R (2017) A hybrid catalytic route to fuels from biomass syngas OSTI. GOV. doi:https://doi.org/10.2172/142374

  258. Humbird RD, Tao L, Kinchin C, Hsu D, Aden A, Schoen P (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pre-treatment and enzymatic hydrolysis of corn stover. Report no. NREL/TP-5100-47764. http://www.nrel.gov/docs/fy11osti/47764.pdf

    Google Scholar 

  259. Brooks KP, Snowden-Swan LJ, Jones SB, Butcher MG, Lee GSJ, Anderson DM, Frye JG, Holladay JE, Owen J, Harmon L, Burton F, Palou-Rivera I, Plaza J, Handler R, Shonnard D (2016) Low-carbon aviation fuel through the alcohol to jet pathway. In: Chuck C (ed) Biofuels for aviation: feedstocks, technology and implementation. Academic, Cambridge, MA, p 390

    Google Scholar 

  260. Lilga MA (2016) Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels. WO 2016067032, WO 2016067033 (2016); US9,663,416 (2017)

    Google Scholar 

  261. Lilga MA, Frye J, Lee S, Albrecht K (2016) Conversion of 2,3 butane-diol to butadiene, U.S. Patent No. 9:434,569 B2

    Google Scholar 

  262. Narula CK, Li Z, Casbeer E, Geiger RA, Szybist JP, Keller M, Davison BH, Theiss T. Direct catalytic upgrading of current dilute alcohol fermentation streams to hydrocarbons for fungible fuels. www.energy.gov-2015/04-biochemical_conversion_davison_0315

    Google Scholar 

  263. Wyman CE. Novel vertimass catalyst for conversion of ethanol and other alcohols into fungible gasoline, jet, and diesel fuel blend stocks. https://energy.gov/sites/prod/files/2015/07/f24/wyman_bioenergy_2015

    Google Scholar 

  264. Hannon JR. Ethanol conversion to fungible gasoline, diesel, and jet fuel blend stocks and high value chemical coproducts (BTEX). www.energy.gov-sites-files-2017/10-hannon_bioeconomy_2017

    Google Scholar 

  265. Wyman CE, Hannon J (2016) R systems and methods for reducing energy consumption in production of ethanol fuel by conversion to hydrocarbon fuels US20160362612A1, 15 Dec, 2016

    Google Scholar 

  266. Wyman CE, Hannon JR (2019) Systems and methods for improving yields of hydrocarbon fuels from alcohols, US/2019/00119579A1, 25 Apr 2019

    Google Scholar 

  267. Narula, C.K, Li, Z, Casbeer, E.M, Geiger, R. A, Debusk, M.M, Keller, M, Buchanan, M.V, and Davison, B.H, Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons, Sci Rep, 5, 16039. doi: 10.1038/srep16039

    Google Scholar 

  268. Narula CK, Davison BH, Keller M (2017) Zeolitic catalytic conversion of alcohols to hydrocarbons, U.S 9533921, 3 Jan 2017

    Google Scholar 

  269. Narula CK, Davison BH (2015) Catalytic conversion of alcohols having at least three carbon Atoms to hydrocarbon blend-stock, U.S. 9181493, 10 Nov 2015

    Google Scholar 

  270. Narula CK, Davison BH, Keller M. Catalytic conversion of alcohols to hydrocarbons with low benzene content, U.S. 9278892, 8 Mar, US9434658, 5 Sep 2016

    Google Scholar 

  271. Hannon JR. Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blend stocks. www.pnas.org/cgi/doi/10.1073/pnas.1821684116

    Google Scholar 

  272. Johnston G 2017 Alcohol to jet-iso-butanol—ICAO seminar on alternate fuels, ICAO Head Quarters, Montreal, 8–9 Feb 2017

    Google Scholar 

  273. Matthew WP, Taylor JD. Renewable jet fuel blendstock from iso-butanol, US 8975461, 10th Mar 2015; US Pat. Appl. 2011/0288352, 24 Nov 2011

    Google Scholar 

  274. Green car Congress, Dec 19th 2019 – Delta enters off-take agreement with Gevo for 10 million gallons per year of sustainable aviation fuel

    Google Scholar 

  275. Wright ME (2012) Biomass to alcohol to jet/diesel-APAN Community. community.apan.org›intelligent-evolution-components-attachments, Aus. Brief, final.pdf

    Google Scholar 

  276. Cobalt and the Naval Air Warfare Center team up to produce a renewable jet fuel from bio N-butanol from naval-air-warfare-center-team-up-to-produce-a-renewable-jet-fuel-from-bio-n-butanol-143461676.html. http://www.prnewswire.com/news-releases/cobalt-and-the-

    Google Scholar 

  277. Naval Air Warfare Center awards contract to Albemarle for processing Cobalt Technologies bio n-butanol to renewable jet fuel using alcohol-to-jet process – Green car Congress, 20 Mar 2012

    Google Scholar 

  278. Michael E, Wright ME, Benjamin GH (2008) Quintana RL Highly Efficient Zirconium-catalyzed Batch Conversion of1-Butene: A New Route to Jet Fuels. Energy Fuel 22:3299–3302. https://doi.org/10.1021/ef800380b

    Article  CAS  Google Scholar 

  279. Ruddy D, Dagle R Li Z (2019) Liquid fuels via upgrading of indirect liquefaction intermediates. WBS: 2.3.1.100/304/305. www.energy.gov, 2019/03

    Google Scholar 

  280. Bradin D 2014 Process for producing renewable jet fuel compositions, WO 2014/008337 Al, 9 Jun

    Google Scholar 

  281. Dagle VL, Smith C, Flake AKO, Gray MJ, Ramaswamy KK, Dagle RA (2016) Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels. Green Chem 18:1880–1891. https://doi.org/10.1039/c5gc02298c

    Article  CAS  Google Scholar 

  282. Wang W-C, Tao L, Markham J, Zhang Y, Tan E, Batan L, Warner E, Biddy M (2016) Review of biojet fuel conversion technologies, technical report NREL/TP-5100-66291, July. National Renewable Energy Laboratory, Golden, CO. www.nrel.gov/publications

    Google Scholar 

  283. Cortright R, Davda R, Dumesic J (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–976. https://doi.org/10.1038/nature01009

    Article  CAS  Google Scholar 

  284. Davda R, Shabaker J, Huber G, Cortright RJ, Dumesic JA (2005) A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl Catal B Environ 56:171–186. https://doi.org/10.1016/j.apcatb.2004.04.027

    Article  CAS  Google Scholar 

  285. Hoang, T. M. C, Vikla, A.K.K Seshan K 2016 Aqueous-phase reforming of sugar derivatives: challenges and opportunities, in Dmitry Murzin and Olga Simakova Biomass sugars for non-fuel applications, RSC Green Chemistry The Royal Society of Chemistry London 44, pp. 54–88

    Google Scholar 

  286. Fasolini A, Cucciniello R, Paone E, Mauriello F, Tabanelli TA (2019) Short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6-C5 sugars and polyols. Catalysts 9:917. https://doi.org/10.3390/catal9110917

    Article  CAS  Google Scholar 

  287. Vaidya PD, Lopez-Sanchez JA (2017) Review of hydrogen production by catalytic aqueous-phase reforming. Chem Select 2:6563–6576. https://doi.org/10.1002/slct.201700905

    Article  CAS  Google Scholar 

  288. Davda R, Shabaker J, Huber G, Cortright RJ, Dumesic JA (2003) Aqueous phase reforming of ethylene glycol on silica-supported metal catalysts. Appl Catal B Environ 43:13–26. https://doi.org/10.1016/S0926-3373(02)00277-1

    Article  CAS  Google Scholar 

  289. Chen G, Li W, Chen H, Yan B (2015) Progress in the aqueous-phase reforming of different biomass-derived alcohols for hydrogen production. J Zhejiang Univ Sci A (Appl Phys Eng) 16(6):491–506. https://doi.org/10.1631/jzus.A1500023

    Article  CAS  Google Scholar 

  290. Kim TW, Kim HD, Jeong KE, Chae H-J, Jeong S-Y, Lee C-H, Kim C-U (2011) Catalytic production of hydrogen through aqueous-phase reforming over platinum/ordered mesoporous carbon catalysts. Green Chem 13(7):1718–1728. https://doi.org/10.1039/c1gc15235a

    Article  CAS  Google Scholar 

  291. Kim HD, Park HJ, Kim TW, Jeong K-E, Chae H-J, Jeong S-Y, Lee C-H, Kim C-U (2012) Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts. Int J Hydrog Energy 37(10):8310–8317. https://doi.org/10.1016/j.ijhydene.2012.02.160

    Article  CAS  Google Scholar 

  292. Kim HD, Park HJ, Kim TW, Jeong K-E, Chae H-J, Jeong S-Y, Lee C-H, Kim C-U (2012) The effect of support and reaction conditions on aqueous phase reforming of polyol over supported Pt-Re bimetallic catalysts. Catal Today 185(1):73–80. https://doi.org/10.1016/j.cattod.2011.08.012

    Article  CAS  Google Scholar 

  293. Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl Catal B Environ 62:226–235. https://doi.org/10.1016/j.apcatb.2005.07.010

    Article  CAS  Google Scholar 

  294. Bai Y, Lu CS, Ma L, Chen P, Zheng YF, Li XN (2006) Hydrogen production by aqueous-phase reforming of ethylene glycol over Pt catalysts supported on γ-Al2O3 modified with Ce and Mg. Chin J Catal 27(3):275–280

    CAS  Google Scholar 

  295. Wawrzetz A, Peng B, Hrabar A, Jentys A, Lemonidou AA, Lercher JA (2010) Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol. J Catal 269(2):411–420. https://doi.org/10.1016/j.jcat.2009.11.027

    Article  CAS  Google Scholar 

  296. Barbelli ML, Pompeo F, Santori GF, Nichio NN (2013) Pt catalyst supported on α-Al2O3 modified with CeO2 and ZrO2 for aqueous-phase-reforming of glycerol. Catal Today 213:58–64. https://doi.org/10.1016/j.cattod.2013.02.023

    Article  CAS  Google Scholar 

  297. Wen G, Xu Y, Ma H, Xu Z, Tian Z (2008) Production of hydrogen by aqueous-phase reforming of glycerol. Int J Hydrog Energy 33(22):6657–6666. https://doi.org/10.1016/j.ijhydene.2008.07.072

    Article  CAS  Google Scholar 

  298. Fasolini A, Cespi D, Tabanelli T, Cucciniello R, Cavani F (2019) Hydrogen from renewables: a case study of glycerol reforming. Catalysts 9:722. https://doi.org/10.3390/catal9090722

    Article  CAS  Google Scholar 

  299. Seretis A, Tsiakaras P (2016) Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2– Al2O3 supported nickel catalyst. Fuel Process Technol 142:135–146

    Article  CAS  Google Scholar 

  300. Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Navarro RM, Sánchez-Sánchez MC, Fierro JLG (2008) Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top Catal 49:46–58. https://doi.org/10.1007/s11244-008-9060-9

    Article  CAS  Google Scholar 

  301. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuel 19:2098–2106. https://doi.org/10.1021/ef0500538

    Article  CAS  Google Scholar 

  302. Tokarev A, Kirilin A, Murzina E, Eranen K, Mikkola JP (2010) The role of bio-ethanol in aqueous phase reforming to sustainable hydrogen. Int J Hydrog Energy 35:12642–12649. https://doi.org/10.1016/j.ijhydene.2010.07.118

    Article  CAS  Google Scholar 

  303. Roy B, Loganathan K, Pham H, Datye AK, Leclerc CA (2010) Surface modification of solution combustion synthesized Ni/Al2 O3 catalyst for aqueous-phase reforming of ethanol. Int J Hydrog Energy 35:11700–11708. https://doi.org/10.1016/j.ijhydene.2010.07.167

    Article  CAS  Google Scholar 

  304. Roy B, Martinez U, Loganathan K, Datye AK, Leclerc CA (2012) Effect of preparation methods on the performance of Ni/Al2 O3 catalysts for aqueous-phase reforming of ethanol: Part I catalytic activity. Int J Hydrog Energy 37:8143–8153. https://doi.org/10.1016/j.ijhydene.2012.02.056

    Article  CAS  Google Scholar 

  305. Roy B, Artyushkova K, Pham H, Li L, Leclerc CA (2012) Effect of preparation method on the performance of the Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: Part II characterization. Int J Hydrog Energy 37:18815–18826. https://doi.org/10.1016/j.ijhydene.2012.09.098

    Article  CAS  Google Scholar 

  306. Nozawa T, Mizukoshi Y, Yoshida A, Naito S (2014) Aqueous phase reforming of ethanol and acetic acid over TiO2 supported Ru catalysts. Appl Catal B Environ 146:221–226. https://doi.org/10.1016/j.apcatb.2013.06.017

    Article  CAS  Google Scholar 

  307. Cruz IO, Ribeiro NF, Aranda DA, Souza MMVM (2008) Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors. Catal Commun 9:2606–2611. https://doi.org/10.1016/j.catcom.2008.07.031

    Article  CAS  Google Scholar 

  308. Roy B, Sullivan H, Leclerc CA (2011) Aqueous-phase reforming of n-BuOH over Ni/Al2O3 and Ni/CeO2 catalysts. J Power Sources 196:10652–10657. https://doi.org/10.1016/j.jpowsour.2011.08.093

    Article  CAS  Google Scholar 

  309. Shabaker JW, Davda RR, Huber GW, Cartwright RD (2003) Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J Catal 215:344–352. https://doi.org/10.1016/S0021-9517(03)00032-0

    Article  CAS  Google Scholar 

  310. Liu XH (2011) Aqueous-phase reforming of ethylene glycol to hydrogen on supported platinum catalysts. Ph.D. thesis. East China University of Science and Technology, Shanghai

    Google Scholar 

  311. Rose M, Palkovits R (2012) Isosorbide as a renewable platform chemical for versatile applications—quo vadis? ChemSusChem 5:167–176. https://doi.org/10.1002/cssc.201100580

    Article  CAS  Google Scholar 

  312. Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15:1740–1763. https://doi.org/10.1039/c3gc00060e

    Article  CAS  Google Scholar 

  313. Grand View Research Inc. (2020) Market research report—isosorbide market size, share and trend analysis. Grand View Research Inc., San Francisco, CA. Accessed 22 Mar 2020

    Google Scholar 

  314. Besse V, Auvergne R, Carlotti S, Boutevin G, Otazaghine B, Caillol S, Pascault JP, Boutevin B (2013) Synthesis of isosorbide-based polyurethanes: an isocyanate free method. React Funct Polym 73:588–594. https://doi.org/10.1016/j.reactfunctpolym.2013.01.002

    Article  CAS  Google Scholar 

  315. Otomo R, Yokoi T, Tatsumi T (2015) Synthesis of isosorbide from sorbitol in water over high-silica aluminosilicate zeolites. Appl Catal A Gen 505:28–35. https://doi.org/10.1016/j.apcata.2015.07.034

    Article  CAS  Google Scholar 

  316. Shi J, Shan Y, Tian Y, Wan Y, Zheng Y, Feng Y (2016) Hydrophilic sulfonic acid-functionalized micro-bead silica for dehydration of sorbitol to isosorbide. RSC Adv 6:13514–13521. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  317. Yamaguchi A, Sato O, Mimura N, Shirai M (2015) One-pot conversion of cellulose to isosorbide using supported metal catalysts and ion-exchange resin. Catal Commun 67:59–63. https://doi.org/10.1016/j.catcom.2015.04.009

    Article  CAS  Google Scholar 

  318. Xu Y, Tian Z, Wen G, Xu Z, Qu W, Lin L (2006) Production of COx-free hydrogen by alkali enhanced hydrothermal catalytic reforming of biomass-derived alcohols. Chem Lett 35:216–217. https://doi.org/10.1246/cl.2006.216

    Article  CAS  Google Scholar 

  319. Soetaert W, Buchholz K, Vandamme E (1995) Production of D-mannitol and D-lactic acid by fermentation by Leuconostoc mesenteroides Agro Food Ind Hi Tech, 6: 41–44. https://lib.ugent.be/catalog/pug01:256408

    Google Scholar 

  320. Clark IT (1958) Hydrogenolysis of sorbitol. Ind Eng Chem 50:1125–1126. https://doi.org/10.1021/ie50584a026

    Article  CAS  Google Scholar 

  321. Sun J, Liu H (2011) Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts. Green Chem 13:135–142. https://doi.org/10.1039/c0gc00571a

    Article  CAS  Google Scholar 

  322. Nda-Umar UI, Ramli I, Taufiq-Yap YH, Muhamad EN (2019) An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts 9:15. https://doi.org/10.3390/catal9010015

    Article  CAS  Google Scholar 

  323. Cognet P, Aroua MK (eds) (2020) From glycerol to value-added products. Frontiers Media SA, Lausanne. https://doi.org/10.3389/978-2-88963-577-1

    Book  Google Scholar 

  324. Demsash HD, Mohan R (2016) Steam reforming of glycerol to hydrogen over ceria promoted nickel–alumina catalysts. Int J Hydrog Energy 41:22732–22742. https://doi.org/10.1016/j.ijhydene.2016.10.082

    Article  CAS  Google Scholar 

  325. Menezes AO, Rodrigues MT, Zimmaro A, Borges LE, Fraga MA (2011) Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides. Renew Energy 36:595–599. https://doi.org/10.1016/j.renene.2010.08.004

    Article  CAS  Google Scholar 

  326. Rahmat N, Abdullah AZ, Mohamed AR (2010) Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: a critical review. Renew Sust Energ Rev 14:987–1000. https://doi.org/10.1016/j.rser.2009.11.010

    Article  CAS  Google Scholar 

  327. García JI, García-Marín H, Pires E (2014) Glycerol based solvents: synthesis, properties and applications. Green Chem 16:1007–1033. https://doi.org/10.1039/C3GC41857J

    Article  Google Scholar 

  328. Usai E, Gualdi E, Solinas V, Battistel E (2010) Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate. Bioresour Technol 101:7707–7712. https://doi.org/10.1016/j.biortech.2010.05.044

    Article  CAS  Google Scholar 

  329. Morales G, Paniagua M, Melero JA, Vicente G, Ochoa C (2011) Sulfonic acid- functionalized catalysts for the valorization of glycerol via transesterification with methyl acetate. Ind Eng Chem Res 50:5898–5906. https://doi.org/10.1021/ie102357c

    Article  CAS  Google Scholar 

  330. Silva LN, Gonçalves VL, Mota CJ (2010) Catalytic acetylation of glycerol with acetic anhydride. Catal Commun 11:1036–1039. https://doi.org/10.1016/j.catcom.2010.05.007

    Article  CAS  Google Scholar 

  331. Gonzalez-Arellano C, De S, Luque R (2014) Selective glycerol transformations to high value-added products catalysed by aluminosilicate-supported iron oxide nanoparticles. Catal Sci Technol 4:4242–4249. https://doi.org/10.1039/C4CY00714J

    Article  CAS  Google Scholar 

  332. Sandesh S, Kristachar PKR, Manjunathan P, Halgeri AB, Shanbhag GV (2016) Synthesis of biodiesel and acetins by transesterification reactions using novel CaSn (OH)6 heterogeneous base catalyst. Appl Catal A Gen 523:1–11. https://doi.org/10.1016/j.apcata.2016.05.006

    Article  CAS  Google Scholar 

  333. Gonçalves M, Souza VC, Galhardo TS, Mantovani M, Figueiredo FVC, Mandelli D, Carvalho WA (2013) Glycerol conversion catalyzed by carbons prepared from agro industrial wastes. Ind Engg Chem Res 52:2832–2839. https://doi.org/10.1021/ie303072d

    Article  CAS  Google Scholar 

  334. Viswanadham N, Saxena SK (2013) Etherification of glycerol for improved production of oxygenates. Fuel 103:980–986. https://doi.org/10.1016/j.fuel.2012.06.057

    Article  CAS  Google Scholar 

  335. Cornejo A, Barrio I, Campoy M, Lázaro J, Navarrete B (2017) Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: a critical review. Renew Sust Energ Rev 79:1400–1413. https://doi.org/10.1016/j.rser.2017.04.005

    Article  Google Scholar 

  336. Mota CJ, da Silva CXA, Rosenbach N Jr, Costa J, da Silva FV (2010) Glycerin derivatives as fuel additives: the addition of glycerol/acetone ketal (solketal) in gasolines. Energy Fuel 24:2733–2736. https://doi.org/10.1021/ef9015735

    Article  CAS  Google Scholar 

  337. Vicente G, Melero JA, Morales G, Paniagua M, Martín E (2010) Acetalization of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green Chem 12:899–907. https://doi.org/10.1039/B923681C

    Article  CAS  Google Scholar 

  338. De Torres M, Jimenez-Oses G, Mayoral JA, Pires E, Santos M (2012) Glycerol ketals: synthesis and profits in biodiesel blends. Fuel 94:614–616. https://doi.org/10.1016/j.fuel.2011.11.062

    Article  CAS  Google Scholar 

  339. Nanda MR, Yuan Z, Qin W, Ghaziaskar HS, Poirier M-A, Xu CC (2014) A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: catalyst screening. Appl Energy 123:75–81. https://doi.org/10.1016/j.apenergy.2014.02.055

    Article  CAS  Google Scholar 

  340. Nanda MR, Yuan Z, Qin W, Ghaziaskar HS, Poirier M-A, Xu CC (2014) Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: process optimization. Fuel 128:113–119. https://doi.org/10.1016/j.fuel.2014.02.068

    Article  CAS  Google Scholar 

  341. Umbarkar SB, Kotbagi TV, Biradar AV, Pasricha R, Chanale J, Dongare MK, Mamede A-S, Lancelot C, Payen E (2009) Acetalization of glycerol using mesoporous MoO3 /SiO2 solid acid catalyst. J Mol Catal A Chem 310:150–158

    Article  CAS  Google Scholar 

  342. Amin T-K, Amin NAS, Najaafi N, Tarighi S (2018) A review on the catalytic acetalization of bio-renewable glycerol to fuel additives. Front Chem 6:573. https://doi.org/10.3389/fchem.2018.00573

    Article  CAS  Google Scholar 

  343. Ma T, Ding J, Shao R, Xu W, Yun Z (2017) Dehydration of glycerol to acrolein over Wells–Dawson and Keggin type phospho tungstic acids supported on MCM-41 catalysts. Chem Eng J 316: 797–806. http://doi:10.1016/j.cej.2017.02.018

    Google Scholar 

  344. Gu Y, Liu S, Li C, Cui Q (2013) Selective conversion of glycerol to acrolein over supported nickel sulfate catalysts. J Catal 301:93–102. https://doi.org/10.1016/j.jcat.2013.01.019

    Article  CAS  Google Scholar 

  345. Yadav GD, Sharma RV, Katole SO (2013) Selective dehydration of glycerol to acrolein: development of efficient and robust solid acid catalyst MUICaT-5. Ind Eng Chem Res 52:10133–10144. https://doi.org/10.1021/ie401098n

    Article  CAS  Google Scholar 

  346. Jia C-J, Liu Y, Schmidt W, Lu A-H, Schüth F (2010) Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein. J Catal 269:71–79. https://doi.org/10.1016/j.jcat.2009.10.017

    Article  CAS  Google Scholar 

  347. Climent MJ, Corma A, De Frutos P, Iborra S, Noy M, Velty A, Concepción P (2010) Chemicals from biomass: synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts – the role of acid–base pairs. J Catal 269:140–149. https://doi.org/10.1016/j.jcat.2009.11.001

  348. Ishak ZI, Sairi NA, Alias Y, Aroua MKT, Yusoff R (2016) Production of glycerol carbonate from glycerol with aid of ionic liquid as catalyst. Chem Eng J 297:128–138. https://doi.org/10.1016/j.cej.2016.03.104

    Article  CAS  Google Scholar 

  349. Nakagawa Y, Tamura M, Tomishige K (2014) Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. J Mater Chem A 2014(2):6688–6702. https://doi.org/10.1039/c3ta15384c

    Article  CAS  Google Scholar 

  350. Leoneti AB, Aragão-Leoneti V, De Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145. https://doi.org/10.1016/j.renene.2012.02.032

    Article  CAS  Google Scholar 

  351. Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:116–125. https://doi.org/10.1021/bp9701325

    Article  CAS  Google Scholar 

  352. Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, clostridium butyricum VPI 3266, and an engineered strain, clostridium acetobutylicum DG1(pSPD5). Appl Environ Microbiol 72:96–101. https://doi.org/10.1128/AEM.72.1.96-101.2006

    Article  CAS  Google Scholar 

  353. Gonz’alez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336. https://doi.org/10.1016/j.ymben.2005.06.001

    Article  CAS  Google Scholar 

  354. Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28:1755–1759. https://doi.org/10.1007/s10529-006-9154-z

    Article  CAS  Google Scholar 

  355. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-011-1038-0

  356. Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep 9:9–14. https://doi.org/10.1016/j.btre.2015.11.002

    Article  Google Scholar 

  357. Mariscal R, Maireles-Torres P, Ojeda M, Sadaba I, Lopez Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189. https://doi.org/10.1039/C5EE02666K

    Article  CAS  Google Scholar 

  358. Wang Y, Zhao, Rodríguez-Padrón D, Len C (2019) Recent advances in catalytic hydrogenation of furfural. Catalysts 9:796. https://doi.org/10.3390/catal9100796

    Article  CAS  Google Scholar 

  359. Prescient and Strategic Intelligence Pvt. Ltd. Report published in Global Newswire, 7th Nov 2019

    Google Scholar 

  360. Bozell JJ, Moens L, Elliot DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling 28:227–239. PII:S0921-3449(99)00047-6

    Article  Google Scholar 

  361. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) The biofine process: production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries – industrial processes and products. Wiley-VCH, Weinheim

    Google Scholar 

  362. Gonzalez Maldonado GM, Assary RS, Dumesic JA, Curtiss LA (2012) Experimental and theoretical studies of the acid-catalyzed conversion of furfuryl alcohol to levulinic acid in aqueous solution. Energy Environ Sci 5:6981–6989. https://doi.org/10.1039/C2EE03465D

    Article  CAS  Google Scholar 

  363. Xue Z, Liu Q, Wang J, Mu T (2018) Valorization of levulinic acid over non-noble metal catalysts: challenges and opportunities. Green Chem 20:4391–4408. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  364. Ahmad E, Alam MI, Pant KK, Ali Haider M (2018) Catalytic and mechanistic insights into the production of ethyl levulinate from bio renewable feedstocks. Green Chem 18:4804–4823. https://doi.org/10.1039/C6GC01523A

    Article  CAS  Google Scholar 

  365. Demolis A, Essayem N, Rataboul E (2014) Synthesis and applications of alkyl levulinates. ACS Sust Chem Eng 2:1338–1352. https://doi.org/10.1021/sc500082n

    Article  CAS  Google Scholar 

  366. Haan RJ, Lange J-P (2011) US Patent Appl., 20110035991A1

    Google Scholar 

  367. Haan RJ, Lange J-P (2009) World Patatent, WO 2009077606 A2

    Google Scholar 

  368. Lange J-P, Heide E, Buijtenen J, Price R (2012) Furfural-a promising platform for lignocellulosic biofuels. ChemSusChem 5:150–166. https://doi.org/10.1002/cssc.201100648

    Article  CAS  Google Scholar 

  369. Yang S, Hao Y, Wang J, Wang H, Zheng Y, Tian H, Liu Y, Sun B (2017) Selective catalytic dehydration of furfuryl alcohol to 2,2′-difurfuryl ether using a polyoxometalate catalyst. Sci Rep 7:12954. https://doi.org/10.1038/s41598-017-13472-3

    Article  CAS  Google Scholar 

  370. Meng Q, Zheng H, Zhu Y, Li Y (2016) Study on the reaction pathway in decarbonylation of biomass-derived 5-hydroxymethylfurfural over Pd-based catalyst. J Mol Catal A Chem 421:76–82. https://doi.org/10.1016/j.molcata.2016.05.012

    Article  CAS  Google Scholar 

  371. Kim T, Assary RS, Pauls RE, Marshall CL, Curtiss LA, Stair PC (2014) Thermodynamics and reaction pathways of furfuryl alcohol oligomer formation. Catal Commun 46:66–70. https://doi.org/10.1016/j.catcom.2013.11.030

    Article  CAS  Google Scholar 

  372. Yi B, Rajagopalan R, Foley HC, Kim UJ, Liu X, Eklund PC (2006) Catalytic polymerization and facile grafting of poly (furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. J Am Chem Soc 128:11307–11313. https://doi.org/10.1021/ja063518x

    Article  CAS  Google Scholar 

  373. Kumar R, Rajesh A (2012) Process for preparing polyfurfuryl alcohol products, WO 2012/123902 Al, 20 Sep 2012

    Google Scholar 

  374. van Buijtenen J, Lange JP, Price RJ (2011) United States Pat., 2011/0173877

    Google Scholar 

  375. Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30. https://doi.org/10.1023/B:TOCA.0000013537.13540.0e

    Article  CAS  Google Scholar 

  376. Pranger LA, Nunnery GA, Tannenbaum R (2012) Mechanism of the nanoparticle-catalyzed polymerization of furfuryl alcohol and the thermal and mechanical properties of the resulting nanocomposites. Compos Part B 2012(43):1139–1146. https://doi.org/10.1016/j.compositesb.2011.08.010

    Article  CAS  Google Scholar 

  377. Takei T, Iguchi N, Haruta M (2010) Synthesis of acetaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal Surv Jpn 15:80–88. https://doi.org/10.1007/s10563-011-9112-1

    Article  CAS  Google Scholar 

  378. Gallo JMR, Bueno JMC, Schuchardt U (2014) Catalytic transformations of ethanol for biorefineries. J Braz Chem Soc 25:2229–2243. https://doi.org/10.5935/0103-5053.20140272

    Article  CAS  Google Scholar 

  379. Pease RN, Yung CC (1924) The catalytic dehydration of ethyl alcohol and ether by alumina. J Am Chem Soc 46:390–340

    Article  CAS  Google Scholar 

  380. Varisli D, Dogu T, Dogu G (2007) Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropoly acid catalysts. Chem Eng Sci 62:5349–5352. https://doi.org/10.1016/j.ces.2007.01.017

    Article  CAS  Google Scholar 

  381. Sato AG, Volanti DP, de Freitas IC, Longo E, Bueno JMC (2012) Site-selective ethanol conversion over supported copper catalysts. Catal Commun 26:122–126. https://doi.org/10.1016/j.catcom.2012.05.008

    Article  CAS  Google Scholar 

  382. Obora Y (2014) Recent advances in α-alkylation reactions using alcohols with hydrogen borrowing methodologies. ACS Catal 4:3972–3981. https://doi.org/10.1021/cs501269d

    Article  CAS  Google Scholar 

  383. Chakraborty S, Daw P, David YB, Milstein D (2018) Manganese-catalyzed α-alkylation of ketones, esters, and amides using alcohols. ACS Catal 8:10300−10305. https://doi.org/10.1021/acscatal.8b03720

    Article  CAS  Google Scholar 

  384. Chaudhari C, Siddiki SMAH, Kon K, Tomita A, Tai Y, Shimizu K (2014) Cat Sci Technol 4:1064–1069. https://doi.org/10.1039/C3CY00911D

    Article  CAS  Google Scholar 

  385. Kwon MS, Kim N, Seo SH, Park IS, Cheedrala RK, Park J (2005) Recyclable palladium catalyst for highly selective a alkylation of ketones with alcohols. Angew Chem Int Ed 44:6913–6915. https://doi.org/10.1002/anie.200502422

    Article  CAS  Google Scholar 

  386. Kwon MS, Kim N, Park CM, Lee JS, Kang KY, Park J (2005) Palladium nanoparticles entrapped in aluminum hydroxide: dual catalyst for alkene hydrogenation and aerobic alcohol oxidation. Org Lett 7:1077–1079. https://doi.org/10.1021/ol047381w

    Article  CAS  Google Scholar 

  387. Selva M, Perosa A (2008) Green chemistry metrics: comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chem 10:457–464. https://doi.org/10.1039/B713985C

    Article  CAS  Google Scholar 

  388. Fu A, Liu Q, Jiang M, Xu G (2019) Selective N-mono methylation of amines and nitroarenes using methanol over an encapsulated iridium nano catalyst. Asian J Org Chem 8:1–6. https://doi.org/10.1002/ajoc.201900140

    Article  CAS  Google Scholar 

  389. Jiang L, Guo F, Wang Y, Jiang J, Duan Y, Hou Z (2019) Selective N-mono methylation of anilines with methanol catalyzed by commercial Pd/C as an efficient and reusable catalyst. Asian J Org Chem 8:1–5. https://doi.org/10.1002/ajoc.201900509

    Article  CAS  Google Scholar 

  390. Nanda S, Dalai AK, Kozinski JA (2014) Butanol and ethanol production from lignocellulosic feed stock: biomass pretreatment and bioconversion. Energy Sci Eng 2:138–148. https://doi.org/10.1002/ese3.41

    Article  CAS  Google Scholar 

  391. Bazzanella AM, Ausfelder F (2017) Low carbon energy and feedstock for the European chemical industry. DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V, Frankfurt. ISBN:978-3-89746-196-2

    Google Scholar 

  392. Lipinski ES (1981) Chemicals from biomass: petrochemical substitution options. Science 212:1465–1471. https://doi.org/10.1126/science.212.4502.1465

    Article  Google Scholar 

  393. Rass-Hansen J, Falsig H, Jørgensen B, Christensen CH (2007) Bio-ethanol: fuel or feedstock? J Chem Technol Biotechnol 82:329. https://doi.org/10.1002/jctb.1665

    Article  CAS  Google Scholar 

  394. Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G et al (2014) Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol 48:7200–7203. https://doi.org/10.1021/es5025433

    Article  CAS  Google Scholar 

  395. Balan V, Chiaramonti D, Kumar S (2013) Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod Biorefin 7:732–759. https://doi.org/10.1002/bbb.1436

    Article  CAS  Google Scholar 

  396. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. Biotechnology 463074:463074. https://doi.org/10.1155/2014/463074

    Article  CAS  Google Scholar 

  397. Karimi K, Tabatabaei M, Horvath IS, Kumar R (2015) Recent trends in acetone, butanol and ethanol (ABE) production. Biofuel Res J 8:301–308. https://doi.org/10.18331/BRJ2015.2.4.4

    Article  Google Scholar 

  398. Biswas S, Katiyar R, Gurjar BR, Pruthi V (2017) Role of different feedstocks on the butanol production through microbial and catalytic routes. Int J Chem Engg 2017:20160215. https://doi.org/10.1515/ijcre-2016-0215

    Article  CAS  Google Scholar 

  399. Tsvetanova F, Petrova P, Petrov K (2018) Microbial production of 1-butanol – recent advances and future prospects. J Chem Technol Metall 53:683–696. https://www.researchgate.net/publication/325554503

    Google Scholar 

  400. Dagle VL, Flake MD, Lemmon TL, Lopez JS, Kovarik L, Dagle RA (2018) Effect of the SiO2 support on the catalytic performance of Ag/ZrO2/SiO2 catalysts for the single-bed production of butadiene from ethanol. Appl Catal B Environ 236:576–587. https://doi.org/10.1016/j.apcatb.2018.05.055

    Article  CAS  Google Scholar 

  401. Cimino S, Lisi L, Romannucci S (2018) Catalysts for conversion of ethanol to butanol: effect of acid-base and redox properties. Catal Today 304:58–63. https://doi.org/10.1016/j.cattod.2017.08.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to express their gratefulness to the Department of Science and Technology, Government of India, for establishing the National Centre for Catalysis Research (NCCR) and the Indian Institute of Technology, Madras, Chennai, for their support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vinayagamoorthi, R., Viswanathan, B., Krishnamurthy, K.R. (2021). Catalytic Conversion of Alcohols into Value-Added Products. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_16

Download citation

Publish with us

Policies and ethics