Skip to main content

On Geodesic Triangles with Right Angles in a Dually Flat Space

  • Chapter
  • First Online:
Progress in Information Geometry

Abstract

The dualistic structure of statistical manifolds in information geometry yields eight types of (possibly mixed type) geodesic triangles passing through three given points, the triangle vertices. The interior angles of geodesic triangles can sum up to \(\pi \) like in Euclidean/Mahalanobis flat geometry, or exhibit otherwise angle excesses or angle defects. In this work, we initiate the study of geodesic triangles in dually flat spaces, termed Bregman manifolds, where a generalized Pythagorean theorem holds. We consider non-self dual Bregman manifolds since Mahalanobis self-dual manifolds amount to Euclidean geometry. First, we show how to construct geodesic triangles with either one, two, or three interior right angles, whenever it is possible. Second, we report a construction of triples of points for which the dual Pythagorean theorems hold simultaneously at a point, yielding two dual pairs of dual-type geodesics with right angles at that point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, a geodesic \(\gamma _{pq}^\nabla (t)\) with respect to an affine connection \(\nabla \) satisfies \(\nabla _{\dot{\gamma }_{pq}} \dot{\gamma }_{pq}=0\). A \(\nabla \)-geodesic is an autoparallel curve at it is invariant by affine reparameterization of t (i.e., \(t'=at+b\)).

  2. 2.

    We do consider at a triangle vertex only pairs of geodesics with interior angles linking the two other triangle vertices.

  3. 3.

    Given an affine connection \(\nabla \), the \(\nabla \)-geodesic is an autoparallel curve [15].

  4. 4.

    The notion of dual connections of information geometry is more general than the notion of conjugate connections of affine differential geometry [10] which stems from dual affine immersions.

  5. 5.

    In differential geometry, the tangent plane at a point p is the space of all linear derivations that satisfies the Leibniz’s rule. A basis \(\{t_i\}_i\) of \(T_p\) is such that \(t_i(f)=\frac{\partial f}{\partial \theta ^i}\).

  6. 6.

    A each quadrilateral vertex, we have 4 geodesics defining 6 interior angles between them.

References

  1. Akaho, S., Hino, H., Murata, N.: On a convergence property of a geometrical algorithm for statistical manifolds (2019). arXiv:1909.12644

  2. Amari, S.: Information geometry of positive measures and positive-definite matrices: decomposable dually flat structure. Entropy 16(4), 2131–2145 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Amari, S.-I.: Information Geometry and its Applications, vol. 194. Springer, Berlin (2016)

    Book  Google Scholar 

  4. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Boissonnat, J.-D., Nielsen, F., Nock, R.: Bregman Voronoi diagrams. Discret. Comput. Geom. 44(2), 281–307 (2010)

    Article  MathSciNet  Google Scholar 

  6. Crouzeix, J.-P.: A relationship between the second derivatives of a convex function and of its conjugate. Math. Program. 13(1), 364–365 (1977)

    Article  MathSciNet  Google Scholar 

  7. Edelsbrunner, H., Wagner, H.: Topological data analysis with Bregman divergences. In: 33rd International Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  8. Eguchi, S., et al.: Geometry of minimum contrast. Hiroshima Math. J. 22(3), 631–647 (1992)

    Article  MathSciNet  Google Scholar 

  9. Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  10. Kurose, T.: Dual connections and affine geometry. Math. Z. 203(1), 115–121 (1990)

    Article  MathSciNet  Google Scholar 

  11. Lauritzen, S.L.: Statistical manifolds. Differ. Geom. Stat. Inference 10, 163–216 (1987)

    Article  Google Scholar 

  12. Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci. (Calcutta) 2, 49–55 (1936)

    MATH  Google Scholar 

  13. Nielsen, F.: Legendre transformation and information geometry (2010)

    Google Scholar 

  14. Nielsen, F.: Cramér-Rao lower bound and information geometry. In: Connected at Infinity II, pp. 18–37. Springer, Berlin (2013)

    Google Scholar 

  15. Nielsen, F.: An elementary introduction to information geometry (2018). arXiv:1808.08271

  16. Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory 57(8), 5455–5466 (2011)

    Article  MathSciNet  Google Scholar 

  17. Nielsen, F., Bhatia, R.: Matrix Information Geometry. Springer, Berlin (2013)

    Book  Google Scholar 

  18. Nielsen, F., Garcia, V. Statistical exponential families: a digest with flash cards (2009). arXiv:0911.4863

  19. Nielsen, F., Hadjeres, G.: Monte Carlo information geometry: the dually flat case (2018). arXiv:1803.07225

  20. Nielsen, F., Nock, R.: Sided and symmetrized Bregman centroids. IEEE Trans. Inf. Theory 55(6), 2882–2904 (2009)

    Article  MathSciNet  Google Scholar 

  21. Nielsen, F., Nock, R. Skew Jensen-Bregman Voronoi diagrams. In: Transactions on Computational Science, vol. XIV, pp. 102–128. Springer, Berlin (2011)

    Google Scholar 

  22. Nielsen, F., Nock, R.: On the geometry of mixtures of prescribed distributions. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2861–2865. IEEE (2018)

    Google Scholar 

  23. Nielsen, F., Muzellec, B., Nock, R.: Classification with mixtures of curved Mahalanobis metrics. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 241–245. IEEE (2016)

    Google Scholar 

  24. Nock, R., Magdalou, B., Briys, E., Nielsen, F.: Mining matrix data with Bregman matrix divergences for portfolio selection. In: Matrix Information Geometry, pp. 373–402. Springer, Berlin (2013)

    Google Scholar 

  25. Norden, A.P.: On pairs of conjugate parallel displacements in multidimensional spaces. Dokl. Akad. Nauk SSSR 49(9), 1345–1347 (1945)

    MathSciNet  Google Scholar 

  26. Pietra, S.F., Pietra, V.D., Lafferty, J.: Inducing features of random fields. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 380–393 (1997)

    Article  Google Scholar 

  27. Rosenfeld, B.A.: A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space, vol. 12. Springer Science & Business Media (2012)

    Google Scholar 

  28. Sen, R.N.: Parallel displacement and scalar product of vectors. In: Proceedings of the National Institute of Sciences of India, vol. 14, p. 45. National Institute of Sciences of India (1948)

    Google Scholar 

  29. Shima, H.: The Geometry of Hessian Structures. World Scientific (2007)

    Google Scholar 

  30. Sturmfels, B.: Solving Systems of Polynomial Equations, vol. 97. American Mathematical Society (2002)

    Google Scholar 

  31. Wolf, J.A.: Spaces of Constant Curvature, vol. 372. American Mathematical Society (1972)

    Google Scholar 

  32. Wong, T.-K.L.: Logarithmic divergences from optimal transport and Rényi geometry. Inf. Geom. 1(1), 39–78 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Figures were programmed using processing.org

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Nielsen .

Editor information

Editors and Affiliations

Ethics declarations

Views and opinions expressed are those of the authors and do not necessarily represent official positions of their respective companies.

A. Notations

A. Notations

F :

Strictly convex and \(C^3\) real-valued function

\(F^*\) :

Dual Legendre-Fenchel convex conjugate

\(\theta (p)=(\theta ^1(p),\ldots ,\theta ^D(p))\) :

primal coordinates of point p

\(\eta (p)=(\eta _1(p),\ldots ,\eta _D(p))\) :

dual coordinates of point p

\(\theta _{ab}=\theta _a-\theta _b\) :

notational shortcut

\(\eta _{ab}=\eta _a-\eta _b\) :

notational shortcut

\(D_F(p:q)\) :

Divergence between points

\(B_F(\theta (p):\theta (q))\) :

Bregman divergence

\(A_F(\theta (p):\eta (q))\) :

Fenchel-Young divergence

\((M,g,\nabla ,\nabla ^*)\) :

Dually flat space (Bregman manifold)

\(T_p\) :

Tangent plane at p

\(g_p(u,v)\) :

inner product between two vectors u and v of \(T_p\)

[\(g_{ij}\):

=[\(g(e_i,e_j)\)]\(_{ij}=\nabla ^{2F}(\theta )\)] Riemannian metric

[\({g^*}^{ij}\):

=[\(g^*({e^*}^i,{e^*}^j)\)]\(_{ij}=\nabla ^2F^*(\eta )\)] dual Riemannian metric

\(\prod _{p,q}(v)\) :

primal parallel transport of \(v\in T_p\) to \(T_q\)

\(\prod _{p,q}^*(v)\) :

dual parallel transport of \(v\in T_p\) to \(T_q\)

\(\gamma _{ab}(t)\) :

Primal geodesic: \(\theta (\gamma _{ab}(t))=(1-t)\theta (a)+t\theta (b)\)

\(\gamma _{ab}(t)^*\) :

Dual geodesic: \(\eta (\gamma _{ab}^*(t))=(1-t)\eta (a)+t\eta (b)\)

\((v)_B\) :

vector components in basis B, arranged in a D-tuple

[v:

\(_B\)] vector components in basis B, arranged in a D-dimensional column vector

\(B_p=\{e_i=\partial _i=\frac{\partial }{\partial \theta ^i}\}\) :

natural basis at \(T_p\)

\(B_p^*=\{{e^*}^i=\partial ^i=\frac{\partial }{\partial \eta _i}\}_i\) :

reciprocal basis at \(T_p\) so that \(g(e_i,{e^*}^j)=\delta _{i}^j\)

\(v_{ab}=\frac{d}{\mathrm {d}t}\gamma _{ab}(0)=\dot{\gamma }_{ab}(0)\) :

tangent vector of \(\gamma _{ab}(t)\) at a with contravariant components \(\theta (b)-\theta (a)\)

\(v_{ab}^*=\frac{d}{\mathrm {d}t}\gamma _{ab}^*(0)=\dot{\gamma }_{ab}^*(0)\) :

tangent vector of \(\gamma _{ab}^*(t)\) at a with covariant components \(\eta (b)-\eta (a)\)

[\(v^i\):

\(_B\)] contravariant components of vector v, \(v^i=g(v,{e^*}^i)\)

[\(v_i\):

\(_B\)] covariant components of vector v (meaning \([v]_{B^*}\)), \(v_i=g(v,e_i)\)

\(g_p(u,v)\) :

inner product at \(T_p\) of two vectors: \(g_p(u,v)=u_i v^i=u^i v_i\).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nielsen, F. (2021). On Geodesic Triangles with Right Angles in a Dually Flat Space. In: Nielsen, F. (eds) Progress in Information Geometry. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-65459-7_7

Download citation

Publish with us

Policies and ethics