Skip to main content
  • 324 Accesses

Abstract

The valorization of lignocellulosic biomass (LCB) to biofuels and value-added commodities in biorefineries shows the promise to address the energy demands, the global climate changes, and the societal needs. However, it is still urgent to develop modern biorefinery scenarios to transform LCB into high-value products for the sustainability and feasibility. This chapter summarizes the challenges and perspectives of biorefineries from the aspects of the LCB properties, the process and product, the conversional and emerging technologies, and the lignin valorization. Due to the complex structures of LCB, a substantial knowledge in understanding of its intrinsic properties is essential to facilitate sustainable conversion. The conversional and emerging technologies related to pretreatment, hydrolysis, and fermentation and the interactions among these units have been described systematically. The development of these technologies would further reduce the process cost of biorefineries. After that, the lignin valorization strategies have been discussed to make a sustainable biorefinery. The requirements of innovative modern biorefineries have been proposed to meet the implication of LCB conversion to biofuels and value-added commodities. The summary of these perspectives of LCB upgrading to a diverse set of products would guide the process design, the technology development, and the implementation of biorefineries by mitigating technical risk for scale-up with the improvement of the profitability of biorefinery. Overall, the improved sustainability of biorefinery holds potential advantages to address the problems facing the energy and the societal needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ragauskas, A. J., et al. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344, 709.

    Article  Google Scholar 

  2. Lynd, L. R. (2017). The grand challenge of cellulosic biofuels. Nature Biotechnology, 35, 912–915.

    Article  Google Scholar 

  3. Cantero, D., et al. (2019). Pretreatment processes of biomass for biorefineries: Current status and prospects. Annual Review of Chemical and Biomolecular Engineering, 10, 289–310.

    Article  Google Scholar 

  4. Alonso, D. M., et al. (2017). Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 3, e1603301.

    Article  Google Scholar 

  5. Liu, Z. H., et al. (2019). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362.

    Article  Google Scholar 

  6. Jin, M. J., Gunawan, C., Uppugundla, N., Balan, V., & Dale, B. E. (2012). A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy & Environmental Science, 5, 7168–7175.

    Article  Google Scholar 

  7. Himmel, M. E., et al. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  Google Scholar 

  8. Mohanty, A. K., Vivekanandhan, S., Pin, J. M., & Misra, M. (2018). Composites from renewable and sustainable resources: Challenges and innovations. Science, 362, 536–542.

    Article  Google Scholar 

  9. Seidl, P. R., & Goulart, A. K. (2016). Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry, 2, 48–53.

    Article  Google Scholar 

  10. Zhang, X., Tu, M. B., & Paice, M. G. (2011). Routes to potential bioproducts from Lignocellulosic biomass lignin and hemicelluloses. Bioenergy Research, 4, 246–257.

    Article  Google Scholar 

  11. Liu, Z. H., et al. (2013). Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products, 44, 176–184.

    Article  Google Scholar 

  12. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.

    Article  Google Scholar 

  13. Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90, 877–891.

    Article  Google Scholar 

  14. Ragauskas, A. J., et al. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489.

    Article  Google Scholar 

  15. Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Abstracts of Papers of the American Chemical Society, 223, D70–D70.

    Google Scholar 

  16. Ozdenkci, K., et al. (2017). A novel biorefinery integration concept for lignocellulosic biomass. Energy Conversion and Management, 149, 974–987.

    Article  Google Scholar 

  17. Kawaguchi, H., Hasunuma, T., Ogino, C., & Kondo, A. (2016). Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Current Opinion in Biotechnology, 42, 30–39.

    Article  Google Scholar 

  18. Tilman, D., Hill, J., & Lehman, C. (2006). Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314, 1598–1600.

    Article  Google Scholar 

  19. Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2019). Lignocellulosic biorefineries in Europe: Current state and prospects. Trends in Biotechnology, 37, 231–234.

    Article  Google Scholar 

  20. Rinaldi, R., et al. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, Biorefining and Catalysis. Angewandte Chemie, International Edition, 55, 8164–8215.

    Article  Google Scholar 

  21. Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W., & Sels, B. F. (2017). Lignin-first biomass fractionation: The advent of active stabilisation strategies. Energy & Environmental Science, 10, 1551–1557.

    Article  Google Scholar 

  22. Amiri, M. T., Dick, G. R., Questell-Santiago, Y. M., & Luterbacher, J. S. (2019). Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Nature Protocols, 14, 921–954.

    Article  Google Scholar 

  23. Mood, S. H., et al. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93.

    Article  Google Scholar 

  24. Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52, 858–875.

    Article  Google Scholar 

  25. Ding, S. Y., et al. (2012). How does plant Cell Wall nanoscale architecture correlate with enzymatic digestibility? Science, 338, 1055–1060.

    Article  Google Scholar 

  26. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, 675–685.

    Article  Google Scholar 

  27. Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30, 279–291.

    Article  Google Scholar 

  28. Girio, F. M., et al. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–4800.

    Article  Google Scholar 

  29. Liu, Z. H., et al. (2019). Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries. Sustainable Energy & Fuels, 3, 2024–2037.

    Article  Google Scholar 

  30. Zhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology & Biotechnology, 35, 367–375.

    Article  Google Scholar 

  31. Chen, H. Z., & Liu, Z. H. (2015). Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnology Journal, 10, 866–885.

    Article  Google Scholar 

  32. Zhao, X. B., Zhang, L. H., & Liu, D. H. (2012). Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 6, 465–482.

    Article  Google Scholar 

  33. Holwerda, E. K., et al. (2019). Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnol Biofuels, 12, 1–12.

    Google Scholar 

  34. Tarasov, D., Leitch, M., & Fatehi, P. (2018). Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for Biofuels, 11, 269.

    Article  Google Scholar 

  35. Liu, Z. H., & Chen, H. Z. (2016). Mechanical property of different corn Stover morphological fractions and its correlations with high solids enzymatic hydrolysis by periodic peristalsis. Bioresource Technology, 214, 292–302.

    Article  Google Scholar 

  36. Liu, Z. H., Qin, L., Li, B. Z., & Yuan, Y. J. (2015). Physical and chemical characterizations of corn Stover from leading pretreatment methods and effects on enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 3, 140–146.

    Article  Google Scholar 

  37. Mosier, N., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  Google Scholar 

  38. Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  Google Scholar 

  39. Wyman, C. E., et al. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.

    Article  Google Scholar 

  40. Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass - an overview. Bioresource Technology, 199, 76–82.

    Article  Google Scholar 

  41. Liu, Z. H., & Chen, H. Z. (2017). Two-step size reduction and post-washing of steam exploded corn stover improving simultaneous saccharification and fermentation for ethanol production. Bioresource Technology, 223, 47–58.

    Article  Google Scholar 

  42. Liu, Z. H., et al. (2013). Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresource Technology, 132, 5–15.

    Article  Google Scholar 

  43. Feng, L., et al. (2014). Combined severity during pretreatment chemical and temperature on the Saccharification of wheat straw using acids and alkalis of differing strength. BioResources, 9, 24–38.

    Google Scholar 

  44. Shen, X. J., et al. (2019). Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 21, 275–283.

    Article  Google Scholar 

  45. Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318.

    Article  Google Scholar 

  46. Liu, Z. H., et al. (2017). Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 19, 4939–4955.

    Article  Google Scholar 

  47. Liu, Z. H., et al. (2019). Codesign of combinatorial Organosolv pretreatment (COP) and lignin nanoparticles (LNPs) in biorefineries. ACS Sustainable Chemistry & Engineering, 7, 2634–2647.

    Article  Google Scholar 

  48. Zhang, K., Pei, Z. J., & Wang, D. H. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33.

    Article  Google Scholar 

  49. Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20, 809–815.

    Article  Google Scholar 

  50. Serna, L. V. D., Alzate, C. E. O., & Alzate, C. A. C. (2016). Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresource Technology, 199, 113–120.

    Article  Google Scholar 

  51. Zhang, J. W., Zhong, Y. H., Zhao, X. N., & Wang, T. H. (2010). Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresource Technology, 101, 9815–9818.

    Article  Google Scholar 

  52. Mota, T. R., de Oliveira, D. M., Marchiosi, R., Ferrarese, O., & dos Santos, W. D. (2018). Plant cell wall composition and enzymatic deconstruction. AIMS Bioengineering, 5, 63–77.

    Article  Google Scholar 

  53. Chen, H. Z., & Liu, Z. H. (2017). Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Engineering in Life Sciences, 17, 489–499.

    Article  Google Scholar 

  54. Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101, 4851–4861.

    Article  Google Scholar 

  55. Chandra, R. P., et al. (2007). Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering/Biotechnology, 108, 67–93.

    Article  Google Scholar 

  56. Hall, M., Bansal, P., Lee, J. H., Realff, M. J., & Bommarius, A. S. (2010). Cellulose crystallinity – A key predictor of the enzymatic hydrolysis rate. The FEBS Journal, 277, 1571–1582.

    Google Scholar 

  57. Kumar, R., et al. (2018). Cellulose-hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chemistry, 20, 921–934.

    Article  Google Scholar 

  58. Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30, 1458–1480.

    Article  Google Scholar 

  59. Yang, Q., & Pan, X. J. (2016). Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 113, 1213–1224.

    Article  Google Scholar 

  60. Jorgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 96, 862–870.

    Article  Google Scholar 

  61. Modenbach, A. A., & Nokes, S. E. (2012). The use of high-solids loadings in biomass pretreatment-a review. Biotechnology and Bioengineering, 109, 1430–1442.

    Article  Google Scholar 

  62. Nguyen, T. Y., Cai, C. M., Kumar, R., & Wyman, C. E. (2017). Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proceedings of the National Academy of Sciences of the United States of America, 114, 11673–11678.

    Article  Google Scholar 

  63. Jin, M. J., et al. (2017). Toward high solids loading process for lignocellulosic biofuel production at a low cost. Biotechnology and Bioengineering, 114, 980–989.

    Article  Google Scholar 

  64. Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover. Bioresource Technology, 205, 142–152.

    Article  Google Scholar 

  65. Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass and Bioenergy, 93, 13–24.

    Article  Google Scholar 

  66. da Silva, A. S., et al. (2016). High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochemistry, 51, 1561–1567.

    Article  Google Scholar 

  67. Liu, Z. H., & Chen, H. Z. (2016). Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresource Technology, 201, 15–26.

    Article  Google Scholar 

  68. Hu, J. G., et al. (2015). The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresource Technology, 186, 149–153.

    Article  Google Scholar 

  69. Xue, S. S., et al. (2015). Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. Biotechnology for Biofuels, 8, 195.

    Article  Google Scholar 

  70. Qin, L., et al. (2016). Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for Biofuels, 9, 1–10.

    Article  Google Scholar 

  71. Li, X., et al. (2018). Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123, 664–674.

    Article  Google Scholar 

  72. Binod, P., Janu, K. U., Sindhu, R., & Pandey, A. (2011). Hydrolysis of Lignocellulosic biomass for bioethanol production. Bioscience, Biotechnology, and Biochemistry, 229–250, Academic press.

    Google Scholar 

  73. Teugjas, H., & Valjamae, P. (2013). Product inhibition of cellulases studied with C-14-labeled cellulose substrates. Biotechnology for Biofuels, 6, 1–14.

    Article  Google Scholar 

  74. Sun, S. L., Huang, Y., Sun, R. C., & Tu, M. B. (2016). The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chemistry, 18, 4276–4286.

    Article  Google Scholar 

  75. Yoo, C. G., Li, M., Meng, X. Z., Pu, Y. Q., & Ragauskas, A. J. (2017). Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 19, 2006–2016.

    Article  Google Scholar 

  76. Liu, Z. H., Qin, L., Zhu, J. Q., Li, B. Z., & Yuan, Y. J. (2014). Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnology for Biofuels, 7, 1–16.

    Article  Google Scholar 

  77. Zeng, Y. N., Zhao, S., Yang, S. H., & Ding, S. Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 27, 38–45.

    Article  Google Scholar 

  78. Zhang, G. C., Liu, J. J., Kong, I. I., Kwak, S., & Jin, Y. S. (2015). Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Current Opinion in Chemical Biology, 29, 49–57.

    Article  Google Scholar 

  79. Raud, M., Kikas, T., Sippula, O., & Shurpali, N. J. (2019). Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 111, 44–56.

    Article  Google Scholar 

  80. Nogue, V. S., & Karhumaa, K. (2015). Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters, 37, 761–772.

    Article  Google Scholar 

  81. Lau, M. W., & Dale, B. E. (2009). Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proceedings of the National Academy of Sciences of the United States of America, 106, 1368–1373.

    Article  Google Scholar 

  82. Ko, J. K., Um, Y., Woo, H. M., Kim, K. H., & Lee, S. M. (2016). Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresource Technology, 209, 290–296.

    Article  Google Scholar 

  83. Jin, M. J., Lau, M. W., Balan, V., & Dale, B. E. (2010). Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresource Technology, 101, 8171–8178.

    Article  Google Scholar 

  84. Lee, S. K., Chou, H., Ham, T. S., Lee, T. S., & Keasling, J. D. (2008). Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 19, 556–563.

    Article  Google Scholar 

  85. Jullesson, D., David, F., Pfleger, B., & Nielsen, J. (2015). Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 33, 1395–1402.

    Article  Google Scholar 

  86. Qi, H., Li, B. Z., Zhang, W. Q., Liu, D., & Yuan, Y. J. (2015). Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnology Advances, 33, 1412–1419.

    Article  Google Scholar 

  87. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.

    Article  Google Scholar 

  88. Brethauer, S., & Wyman, C. E. (2010). Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, 101, 4862–4874.

    Article  Google Scholar 

  89. Puligundla, P., Smogrovicova, D., Mok, C., & Obulam, V. S. R. (2019). A review of recent advances in high gravity ethanol fermentation. Renewable Energy, 133, 1366–1379.

    Article  Google Scholar 

  90. Liu, Z. H., Xie, S. X., Lin, F. R., Jin, M. J., & Yuan, J. S. (2018). Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnology for Biofuels, 11, 21.

    Article  Google Scholar 

  91. Li, M., Pu, Y. Q., & Ragauskas, A. J. (2016). Current understanding of the correlation of Lignin structure with biomass recalcitrance. Frontiers in Chemistry, 4(45), 1–8.

    Google Scholar 

  92. Yang, H. B., et al. (2019). Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery. Biotechnol Biofuels, 12, 171.

    Article  Google Scholar 

  93. Giummarella, N., Pu, Y. Q., Ragauskas, A. J., & Lawoko, M. (2019). A critical review on the analysis of lignin carbohydrate bonds. Green Chemistry, 21, 1573–1595.

    Article  Google Scholar 

  94. Wu, X. Y., et al. (2020). Lignin-derived electrochemical energy materials and systems. Biofuels, Bioproducts and Biorefining, 14, 650–672.

    Article  Google Scholar 

  95. Huang, C., et al. (2019). Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. Carbohydrate Polymers, 222(115036), 1–7.

    Google Scholar 

  96. Yiamsawas, D., Beckers, S. J., Lu, H., Landfester, K., & Wurm, F. R. (2017). Morphology-controlled synthesis of lignin Nanocarriers for drug delivery and carbon materials. ACS Biomaterials Science & Engineering, 3, 2375–2383.

    Article  Google Scholar 

  97. Figueiredo, P., et al. (2017). In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 121, 97–108.

    Article  Google Scholar 

  98. Liu, Z. H., et al. (2019). Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chemistry, 21, 245–260.

    Article  Google Scholar 

  99. Jenkins, R., & Alles, C. (2011). Field to fuel: Developing sustainable biorefineries. Ecological Applications, 21, 1096–1104.

    Article  Google Scholar 

  100. Valdivia, M., Galan, J. L., Laffarga, J., & Ramos, J. L. (2016). Biofuels 2020: Biorefineries based on lignocellulosic materials. Journal of Microbial Biotechnology, 9, 585–594.

    Article  Google Scholar 

  101. Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1412–1421.

    Article  Google Scholar 

  102. Fernando, S., Adhikari, S., Chandrapal, C., & Murali, N. (2006). Biorefineries: Current status, challenges, and future direction. Energy & Fuels, 20, 1727–1737.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, ZH. (2021). Challenges and Perspectives of Biorefineries. In: Liu, ZH., Ragauskas, A. (eds) Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities. Springer, Cham. https://doi.org/10.1007/978-3-030-65584-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65584-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65583-9

  • Online ISBN: 978-3-030-65584-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics