Skip to main content

Metal Oxide Nanoparticle Toxicity in Aquatic Organisms: An Overview of Methods and Mechanisms

  • Chapter
  • First Online:
Nanomaterial Biointeractions at the Cellular, Organismal and System Levels

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanoparticles (NPs) have been variously used in the areas of agriculture, biomedicine, nanotechnology, human health, and biological applications. The potential human and animal exposures to NPs are increasing as the range of consumer products containing engineered NPs increases over time. Thus, there has been a surge in research focusing on the interactions and toxicity of NPs with living organisms. The toxicity of metallic nanoparticles such as Ag has been extensively studied in bacterial cell studies. However, one of the most widely used nanomaterials includes metal oxide NPs. Metal oxide NPs are generally utilized for their semiconductor properties. NPs such as TiO2, ZnO, and CuO have been used in different applications including photocatalysis, energy storage, and biomedical applications. This chapter focuses on the interactions of TiO2, ZnO, and CuO NPs and their adverse effects on live organisms and cells. Special emphasis is given in this chapter to discuss recent results reported on the interactions of algal cells: Diatoms/plankton species, bivalve species, fish species. Some studies on the exposure of human cell lines and mammalian models are also included. The common effects of metal oxide nanoparticles exhibited across the species of organisms include, predominately, oxidative stress and decreased cellular viability. To gain a comprehensive picture of NP toxicity, the identification of surfactant toxicity is important, as many of the stabilizing agents used in NP synthesis are highly toxic. Finally, the stability of the NPs is important to the discussion of NP toxicity. Stability of NPs and NP toxicity can be seen as the toxicological differences in the phases of TiO2. Rutile is the most thermodynamically stable form of TiO2 and is less toxic than the anatase form of TiO2. As well, CuO and ZnO NPs are sparingly soluble in aqueous solution, which can generate Cu2+ and Zn2+ ions in solution. Both Cu2+ and Zn2+ ions are toxic and complicate the interpretations of CuO and ZnO NP toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Khalek, A. A., Badran, S. R., & Marie, M. (2016). Toxicity evaluation of copper oxide bulk and nanoparticles in Nile tilapia, Oreochromis niloticus, using hematological, bioaccumulation and histological biomarkers. Fish Physiology and Biochemistry, 42, 1225–1236.

    CAS  PubMed  Google Scholar 

  • Abdel-Mohsen, A. M., Hrdina, R., Burgert, L., Abdel-Rahman, R. M., HaÅ¡ová, M., Å mejkalová, D., Kolář, M., Pekar, M., & Aly, A. S. (2013). Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydrate Polymers, 92, 1177–1187.

    CAS  PubMed  Google Scholar 

  • Absar, A., Satyajyoti, S., Islam, K. M., Sastry, K. R., & Murali, S. (2005). Extra-/intracellular biosynthesis of gold nanoparticles by an Alkalotolerant fungus, Trichothecium sp. Journal of Biomedical Nanotechnology, 1, 47–53.

    Google Scholar 

  • Adeleye, A. S., Oranu, E. A., Tao, M., & Keller, A. A. (2016). Release and detection of nanosized copper from a commercial antifouling paint. Water Research, 102, 374–382.

    CAS  PubMed  Google Scholar 

  • Akhtar, M. J., Ahamed, M., Kumar, S., Majeed Khan, M. A., Ahmad, J., & Alrokayan, S. A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7, 845–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, D., Alarifi, S., Kumar, S., Ahamed, M., & Siddiqui, M. A. (2012). Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquatic Toxicology, 124–125, 83–90.

    PubMed  Google Scholar 

  • Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66, 303.

    CAS  Google Scholar 

  • Aruoja, V., Dubourguier, H., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science Total Environment, 407, 1461–1468.

    CAS  Google Scholar 

  • Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19, 255102.

    CAS  PubMed  Google Scholar 

  • Ates, M., Arslan, Z., Demir, V., Daniels, J., & Farah, I. O. (2015). Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environmental Toxicology, 30, 119–128.

    CAS  PubMed  Google Scholar 

  • Bhuvaneshwari, M., Iswarya, V., Archanaa, S., Madhu, G. M., Kumar, G. K. S., Nagaraj, R., Chandrasekaran, N., & Mukherjee, A. (2015). Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquatic Toxicology, 162, 29–38.

    CAS  PubMed  Google Scholar 

  • Borghi, E. B., Morando, P. J., & Blesa, A. (1991). Dissolution of magnetite by Mercaptocarboxylic acids. Langmuir, 7, 1652–1659.

    CAS  Google Scholar 

  • Bozich, J. S., Lohse, S. E., Torelli, M. D., Murphy, C. J., Hamers, R. J., & Klaper, R. D. (2014). Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environmental Science. Nano, 1, 260–270.

    CAS  Google Scholar 

  • Buerki-Thurnherr, T., Xiao, L., Diener, L., Arslan, O., Hirsch, C., Maeder-Althaus, X., Grieder, K., Wampfler, B., Mathur, S., Wick, P., & Krug, H. F. (2013). In-vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology, 7, 402–416.

    CAS  PubMed  Google Scholar 

  • Buffet, P., Tankoua OF, Pan, J., Berhanu, D., Herrenknecht, C., Poirier, L., Amiard-Triquet, C., Amiard, J., Berard, J., Risso, C., Guibbolini, M., Romeo, M., Reip, P., Valsami-Jones, E., & Mouneyrac, C. (2011). Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere, 84, 166–174.

    CAS  PubMed  Google Scholar 

  • Buffet, P.-E., Amiard-Triquet, C., Dybowska, A., Risso-de Faverney, C., Guibbolini, M., Valsami-Jones, E., & Mouneyrac, C. (2012). Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicology and Environmental Safety, 84, 191–198.

    CAS  PubMed  Google Scholar 

  • Calzolai, L., Gilliland, D., & Rossi, F. (2012). Measuring nanoparticles size distribution in food and consumer products: A review. Journal of Food Additives Contaminants A., 29, 1183–1193.

    CAS  Google Scholar 

  • Casaletto, M. P., Longo, A., Martorana, A., Prestianni, A., & Venezia, A. M. (2006). XPS study of supported gold catalysts: The role of Au0 and Au+δ species as active sites. Surface and Iterface Analysis, 38, 215–218.

    CAS  Google Scholar 

  • Chakraborty, C., Sharma, A. R., Sharma, G., & Lee, S.-S. (2016). Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. Journal of Nanbiotechnology, 14. https://doi.org/10.1186/s12951-016-0217-6.

  • Cheloni, G., Marti, E., & Slaveykova, V. I. (2016). Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquatic Toxicology, 170, 120–128.

    CAS  PubMed  Google Scholar 

  • Chen, J., Dong, X., Zhao, J., & Tang, G. (2009). In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. Journal of Applied Toxicology, 29, 330–337.

    CAS  PubMed  Google Scholar 

  • Chen, L., Zhou, L., Liu, Y., Deng, S., Wu, H., & Wang, G. (2012). Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety, 84, 155–162.

    CAS  PubMed  Google Scholar 

  • Chen, T.-H., Lin, C.-Y., & Tseng, M.-C. (2011). Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Marine Pollution Bulletin, 63, 303–308.

    CAS  PubMed  Google Scholar 

  • Chwalibog, A., Sawosz, E., Hotowy, A., Szeliga, J., Mitura, S., Mitura, K., Grodzik, M., Orlowski, P., & Sokolowska, A. (2010). Visualization of interaction between inorganic nanoparticles and bacteria or fungi. International Journal of Nanomedicine, 5, 1085–1094.

    PubMed  PubMed Central  Google Scholar 

  • Clément, L., Hurel, C., & Marmier, N. (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – Effects of size and crystalline structure. Chemosphere, 90, 1083–1090.

    PubMed  Google Scholar 

  • Currie, H. A., & Silica in Plants, P. C. C. (2007). Biological, biochemical and chemical studies. Annals of Botany, 100, 1383–1389.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrunz, A., Duester, L., Prasse, C., Seitz, F., Rosenfeldt, R., Schilde, C., Schaumann, G. E., & Schulz, R. (2011). Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. PLoS One, 6, e20112. https://doi.org/10.1371/journal.pone.0020112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasari, T. P., Pathakoti, K., & Hwang, H.-M. (2013). Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. Journal of Environmental Sciences, 25, 882–888.

    CAS  Google Scholar 

  • Deng, Q., Tang, H., Liu, G., Song, X., Kang, S., Wang, H., Ng, D. H. L., & Wang, G. (2015). Photocatalytic degradation of 2,4,40-trichlorobiphenyl into long-chain alkanes using Ag nanoparticle decorated flower-like ZnO microspheres. New Journal of Chemistry, 39, 7781.

    CAS  Google Scholar 

  • Durán, N., Durán, M., Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 789–799.

    Google Scholar 

  • Durán, N., Marcato, P. D., De Cont, R., Alves, O. L., Costa, F. T. M., & Brocchi, M. (2010). Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society, 21, 949–959.

    Google Scholar 

  • Esmaeillou, M., Moharamnejad, M., Hsankhani, R., Tehrani, A. A., & Maadi, H. (2013). Toxicity of ZnO nanoparticles in healthy adult mice. Environmental Toxicology and Pharmacology, 35, 67–71.

    CAS  PubMed  Google Scholar 

  • Fabrega, J., Fawcett, S. R., Renshaw, J. C., & Lead, J. R. (2009). Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environmental Science & Technology, 43, 7285–7290.

    CAS  Google Scholar 

  • Fafarman, A. T., Koh, W.-K., Diroll, B. T., Kim, D. K., Ko, D.-K., Oh, S. J., Ye, X., Doan-Nguyen, V., Crump, M. R., Reifsnyder, D. C., Murray, C. B., & Kagan, C. R. (2011). Thiocyanate-capped nanocrystal colloids: Vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. Journal of the American Chemical Society, 133, 15753–15761.

    CAS  PubMed  Google Scholar 

  • Fröhlich, E., & Roblegg, E. (2012). Models for oral uptake of nanoparticles in consumer products. Toxicology, 291, 10–17.

    PubMed  PubMed Central  Google Scholar 

  • Fu, L., Hamzeh, M., Dodard, S., Zhao, Y. H., & Sunahara, G. I. (2015). Irradiation effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation. Environmental Toxicology and Pharmacology, 39, 1074–1080.

    CAS  PubMed  Google Scholar 

  • Ganesan, S., Thirumurthi, N. A., Raghunath, A., Vijayakumar, S., & Perumal, E. (2016). Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos. Journal of Applied Toxicology, 36, 554–567.

    CAS  PubMed  Google Scholar 

  • Gardea-Torresdey, J. L., Parsons, J. G., Gomez, E., Peralta-Videa, J., Troiani, H. E., Santiago, T. P., & Yacaman, M. J. (2002). Formation and growth of au nanoparticles inside live alfalfa plants. Nano Letters, 2, 397–401.

    CAS  Google Scholar 

  • Gerloff, K., Fenoglio, I., Carella, E., Kolling, J., Albrecht, C., Boots, A. W., Förster, I., & Schins, R. P. F. (2012). Distinctive toxicity of TiO2 rutile/Anatase mixed phase nanoparticles on Caco-2 cells. Chemical Research in Toxicology, 25, 646–655.

    CAS  PubMed  Google Scholar 

  • Gomes, T., Pereira, C. G., Cardoso, C., Pinheiro, J. P., Cancio, I., & Bebianno, M. J. (2012). Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquatic Toxicology, 118-119, 72–79.

    CAS  PubMed  Google Scholar 

  • Govindaraju, K., Khaleel, S., Vijayakumar, B., Kumar, G., & Singaravelu, G. (2008). Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, 43, 5115–5122.

    CAS  Google Scholar 

  • Gregory, J. (2005). Particles in water: Properties and processes. CRC Press.

    Google Scholar 

  • Greulich, C., Braun, D., Peetsch, A., Diendorf, J., Siebers, B., Epple, M., & Köller, M. (2012). The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2, 6981–6987.

    CAS  Google Scholar 

  • Griffin, S., Masood, M. I., Nasim, M. J., Sarfraz, M., Ebokaiwe, A. P., Schäfer, K. H., Keck, C. M., & Jacob, C. (2018). Natural nanoparticles: A particular matter inspired by nature. Antioxidants (Basel), 7, 3.

    Google Scholar 

  • Grigore, M. E., Biscu, E. R., Holban, A. M., Gestal, M. C., & Grumezescu, A. M. (2016). Methods of Synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel), 9, 75.

    Google Scholar 

  • Grzelczak, M., Pérez-Juste, J., Mulvaney, P., & Liz-Marzán, L. M. (2008). Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 37, 1783–1791.

    CAS  PubMed  Google Scholar 

  • Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30, 499–511.

    CAS  PubMed  Google Scholar 

  • Haldorai, Y., Kim, B.-K., Jo, Y.-L., & Shim, J.-J. (2014). Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach. Materials Chemistry and Physics, 143, 1452–1461.

    CAS  Google Scholar 

  • Heike, L. M., Norbert, T., Daniela, J., Vladimir, D., Baranov, I., & Kneipp, J. (2014). Trends in single-cell analysis by use of ICP-MS. Analytical and Bioanalytical Chemistry, 206, 6963.

    Google Scholar 

  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71, 1308–1316.

    CAS  PubMed  Google Scholar 

  • Heinlaan, M., Kahru, A., Kasemets, K., Arbeille, B., Prensier, G., & Dubourguier, H. (2011). Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Research, 45, 179–190.

    CAS  PubMed  Google Scholar 

  • Ho, C.-M., Yau, S. K.-W., Lok, C.-N., So, M.-H., & Che, C. M. (2010). Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: A kinetic and mechanistic study. Chemistry, an Asian Journal, 5, 285–293.

    CAS  PubMed  Google Scholar 

  • Hough, R. M., Noble, R. R. P., Hitchen, G. J., Hart, R., Reddy, S. M., Saunders, M., Clode, P., Vaughan, D., Lowe, J., Gray, D. J., An, R. R., Butt, C. R. M., & Verrall, M. (2008). Naturally occurring gold nanoparticles and nanoplates. Geology, 36, 571–574.

    CAS  Google Scholar 

  • Hsiao, I.-L., & Huang, Y.-J. (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Science of the Total Environment, 409, 1219–1228.

    CAS  Google Scholar 

  • Hu, W., Culloty, S., Darmody, G., Lynch, S., Davenport, J., Ramirez-Garcia, S., Dawson, K. A., Lynch, I., Blasco, J., & Sheehan, D. (2014). Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: A redox proteomic investigation. Chemosphere, 108, 289–299.

    CAS  PubMed  Google Scholar 

  • Hu, Y., Xie, J., Tong, Y. W., & Wang, C.-H. (2007). Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Journal of Controlled Release, 118, 7–17.

    CAS  PubMed  Google Scholar 

  • Hurst, J. K., & Lymar, S. V. (1997). Toxicity of Peroxynitrite and related reactive nitrogen species toward Escherichia coli. Chemical Research in Toxicology, 10, 802–810.

    CAS  PubMed  Google Scholar 

  • Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., & Sang, B.-I. (2008). Gu MB. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent Bacteria. Small, 4, 746–750.

    CAS  PubMed  Google Scholar 

  • Institute of Medicine, Food and Nutrition Board. (1998). Dietary reference intakes: Thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press. Copper related health conditions.

    Google Scholar 

  • Isani, G., Falcioni, M. L., Barucca, G., Sekar, D., Andreani, G., Carpene, E., & Falcioni, G. (2013). Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicology and Environmental Safety, 97, 40–46.

    CAS  PubMed  Google Scholar 

  • Jansa, H., & Huo, Q. (2012). Gold nanoparticle-enabled biological and chemical detection and analysis. Chemical Society Reviews, 41, 2849–2866.

    Google Scholar 

  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health, Part A, 41, 2699–2711.

    CAS  Google Scholar 

  • Ji, J., Longa, Z., & Lin, D. (2011). Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 170, 525–530.

    CAS  Google Scholar 

  • Jovanovic, B., Whitley, E. M., Kimura, K., Crumpton, A., & Pali, D. (2015). Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environmental Pollution, 203, 153e164.

    Google Scholar 

  • Karlsson, H. L., Cronholm, P., Gustafsson, J., & Moller, L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21, 1726–1732.

    CAS  PubMed  Google Scholar 

  • Kerkmann, M., Costa, L. T., Richter, C., Rothenfusser, S., Battiany, J., Hornung, V., Johnson, J., Engler, S., Ketterer, T., Heckl, W., Thalhammer, S., Endres, S., & Hartmann, G. (2004). Spontaneous formation of nucleic acid-based nanoparticles is responsible for high interferon-α induction by CpG-A in Plasmacytoid dendritic cells. The Journal of Biological Chemistry, 280, 8086–8093.

    PubMed  Google Scholar 

  • Khan, R., Inam, M. A., Park, D. R., Khan, S., Akram, M., & Yeom, I. T. (2019). The removal of CuO nanoparticles from water by conventional treatment C/F/S: The effect of pH and natural organic matter. Molecules, 24, 914.

    PubMed Central  Google Scholar 

  • Khashan, K. S., Sulaiman, G. M., & Abdulameer, F. A. (2016). Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arabian Journal for Science and Engineering, 41, 301–310.

    CAS  Google Scholar 

  • Kimling, J., Maier, M., Okenve, B., Kotaidi, V., Ballot, H., & Plech, A. (2006). Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry. B, 110, 15700–15707.

    CAS  PubMed  Google Scholar 

  • Kimura, H., Sawada, T., Oshima, S., Kozawa, K., Ishioka, T., & Kato, M. (2005). Toxicity and roles of reactive oxygen species. Current Drug Targets. Inflammation and Allergy, 4, 489–495.

    CAS  PubMed  Google Scholar 

  • Kitchens, C. L., McLeod, M. C., & Roberts, C. B. (2005). Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane microemulsions. Langmuir, 21, 5166–5173.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Swarup, D., & Maji, K. (2014). Adhikary B. γ-Fe2O3 nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Materials Research Bulletin, 49, 28–34.

    Google Scholar 

  • Kumar, V., Guleria, P., Vinay, G., Sudesh, K., & Yadav, K. (2013). Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Science of Total Environment, 461–462, 462–468.

    Google Scholar 

  • Lammel, T., & Sturve, J. (2018). Assessment of titanium dioxide nanoparticle toxicity in the rainbow trout (Onchorynchus mykiss) liver and gill cell lines RTL-W1 and RTgill-W1 under particular consideration of nanoparticle stability and interference with fluorometric assays. NanoImpact, 11, 1–19.

    Google Scholar 

  • Le, T. T., Nguyen, K.-H., Jeon, J.-R., Francis, A. J., & Chang, Y.-S. (2015). Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. Journal of Hazardous Materials, 287, 335–341.

    CAS  PubMed  Google Scholar 

  • Lee, J., Lilly, G. D., Doty, R. C., Podsiadlo, P., & Kotov, N. A. (2009). In vitro toxicity testing of nanoparticles in 3D cell culture. Small, 5, 1213–1221.

    CAS  PubMed  Google Scholar 

  • Lee, W.-M., & An, Y.-J. (2013). Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: No evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere, 91, 536–544.

    CAS  PubMed  Google Scholar 

  • Li, F., Liang, Z., Zheng, X., Zhao, W., Wu, M., & Wang, Z. (2015). Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology, 158, 1–13.

    PubMed  Google Scholar 

  • Li, X., Liu, Y., Song, L., & Liu, J. (2003). Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon, 42, 85–89.

    CAS  PubMed  Google Scholar 

  • Lim, B., Xiong, Y., & Xia, Y. (2007). A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angewandte Chemie, International Edition, 46, 9279–9282.

    CAS  Google Scholar 

  • Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y.-S., & Haynes, C. L. (2012). Assessing nanoparticle toxicity. Annual Review of Analytical Chemistry, 5, 181–205.

    CAS  PubMed  Google Scholar 

  • Luis, I. P.-S., & Liz-Marzán, M. (2002). Synthesis of silver Nanoprisms in DMF. Nano Letters 2, 8, 903–905.

    Google Scholar 

  • Mansfield, C. M., Alloy, M. M., Hamilton, J., Verbeck, G. F., Newton, K., Klaine, S. J., & Roberts, A. P. (2015). Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight. Chemosphere, 120, 206–210.

    CAS  PubMed  Google Scholar 

  • Manzo, S., Miglietta, M. L., Rametta, G., Buono, S., & Francia, G. D. (2013). Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of Total Environment, 445–446, 371–376.

    Google Scholar 

  • Marisa, I., Marin, M. G., Caicci, F., Franceschinis, E., Martucci, A., & Matozzo, V. (2015). In vitro exposure of haemocytes of the clam Ruditapes philippinarum to titanium dioxide (TiO2) nanoparticles: Nanoparticle characterisation, effects on phagocytic activity and internalisation of nanoparticles into haemocytes. Marine Environment Research, 103, 11e17.

    Google Scholar 

  • Marquis, B. J., Love, S. A., Braun, K. L., & Haynes, C. L. (2009). Analytical methods to assess nanoparticle toxicity. Analyst, 134, 425–439.

    CAS  PubMed  Google Scholar 

  • McDonogh, R. M., Fell, C. J. D., & Fane, A. G. (1984). Surface charge and permeability in the ultrafiltration of non-flocculating colloids. Journal of Membrane Science, 21, 285–294.

    CAS  Google Scholar 

  • Melegari, S. P., Perreault, F., Ribeiro Costa, R. H., Popovic, R., & Matias, W. G. (2013). Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquatic Toxicology, 142, 431–440.

    PubMed  Google Scholar 

  • Merrifield, R. C., Stephan, C., & Lead, J. R. (2018). Quantification of Au nanoparticle biouptake and distribution to freshwater algae using single cell—ICP-MS. Environmental Science & Technology, 52, 2271–2277.

    CAS  Google Scholar 

  • Metzler, D. M., Li, M., Erdem, A., & Huang, C. P. (2011). Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 170, 538–546.

    CAS  Google Scholar 

  • Miller, R. J., Lenihan, H. S., Muller, E. B., Tseng, N., Hanna, S. K., & Keller, A. A. (2010). Impacts of metal oxide nanoparticles on marine phytoplankton. Environmental Science & Technology, 44, 7329–7334.

    CAS  Google Scholar 

  • Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N., & Valsami-Jones, E. (2012). The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Science of the Total Environment, 438, 225–232.

    CAS  Google Scholar 

  • Mortimer, M., Kasemets, K., & Kahru, A. (2010). Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 269, 182–189.

    CAS  PubMed  Google Scholar 

  • Mwaanga, P., Carraway, E. R., & van den Hurk, P. (2014). The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquatic Toxicology, 150, 201–209.

    CAS  PubMed  Google Scholar 

  • National Research Council Committee on Copper in Drinking Water. (2000). Copper in Drinking Water. Washington, DC: National Academies Press.

    Google Scholar 

  • Nosaka, Y., & AY, N. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 117(17), 11302–11336.

    CAS  PubMed  Google Scholar 

  • Parke, D. V., & Sapota, A. (1996). Chemical toxicity and reactive oxygen species. International Journal of Occupational Medicine Environmental Health, 9, 331–340.

    CAS  PubMed  Google Scholar 

  • Pauksch, L., Hartmann, S., Rohnke, M., Szalay, G., Alt, V., Schnettler, R., & Lips, K. S. (2014). Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomaterialia, 10, 439–449.

    CAS  PubMed  Google Scholar 

  • Peng, X., Palma, S., Fisher, N. S., & Wong, S. S. (2011). Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology, 102, 186–196.

    CAS  PubMed  Google Scholar 

  • Personick, M. L., Langille, M. R., Zhang, J., Harris, N., Schatz, G. C., & Mirkin, C. A. (2011). Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. Journal of the American Chemical Society, 133, 6170–6173.

    CAS  PubMed  Google Scholar 

  • Postma, D. (1993). The reactivity of iron oxides in sediments: A kinetic approach. Geochimica et Cosmochimica Acta, 57, 5027–5034.

    CAS  Google Scholar 

  • Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2. https://doi.org/10.1186/2228-5326-2-32.

  • Pradhan, A., Seena, S., Pascoal, C., & Cássio, F. (2012). Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere, 89, 1142–1150.

    CAS  PubMed  Google Scholar 

  • Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., & Hasan, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. Coli ATCC-15224. Journal of Materials Science and Technology, 24, 192–196.

    CAS  Google Scholar 

  • Reeves, J. F., Davies, S. J., Dodd, N. J. F., & Jha, A. N. (2008). Hydroxyl radicals (•OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research, 640, 113–122.

    CAS  PubMed  Google Scholar 

  • Rico, C. M., Lee, S. C., Rubenecia, R., Mukherjee, A., Hong, J., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 62, 9669–9675.

    CAS  PubMed  Google Scholar 

  • Rodriguez, A., Bruno, C. A., Marie-José, C., Lecante, C. P., & Bradley, J. S. (1996). Synthesis and isolation of cuboctahedral and icosahedral platinum nanoparticles. Ligand-dependent structures. Chemistry of Materials, 8, 1978–1986.

    CAS  Google Scholar 

  • Rogers, M. A. (2016). Naturally occurring nanoparticles in food. Current Opinion in Food Science, 7, 14–19.

    Google Scholar 

  • Roy, R., Kumar, D., Sharma, A., Gupta, P., Chaudhari, B. P., Tripathi, A., Das, M., & Dwivedi, P. D. (2014). ZnO nanoparticles induced adjuvant effect via toll-like receptors and Src signaling in Balb/c mice. Toxicology Letters, 230, 421–433.

    CAS  PubMed  Google Scholar 

  • Sadiq, M., Dalai, S., Chandrasekaran, N., & Mukherjee, A. (2011). Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and Environmental Safety, 74, 1180–1187.

    CAS  PubMed  Google Scholar 

  • Saif, H. S., Singh, S., Parikh, R. Y., Dharne, M. S., Patole, M., Prasad, B. L. V., & Shouche, Y. S. (2008). Bacterial synthesis of copper/copper oxide nanoparticles. Journal of Nanoscience and Nanotechnology, 8, 3191–3196.

    Google Scholar 

  • Sankar, R., Prasath, B. B., Nandakumar, R., Santhanam, P., Shivashangari, K. S., & Ravikumar, V. (2014). Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles. Environmental Science and Pollution Research, 21, 14232–14240.

    CAS  PubMed  Google Scholar 

  • Scarabelli, L., Grzelczak, M., & Liz-Marzán, L. M. (2013). Tuning gold nanorod synthesis through prereduction with salicylic acid. Chemistry of Materials, 25, 4232–4238.

    CAS  Google Scholar 

  • Schnippering, M., Powell, H. V., Zhang, M., Macpherson, J. V., Unwin, P. R., Mazurenka, M., & Mackenzie, S. R. (2008). Surface assembly and redox dissolution of silver nanoparticles monitored by evanescent wave cavity ring-down spectroscopy. Journal of Physical Chemistry C, 112, 15274–15280.

    CAS  Google Scholar 

  • Sharma, V. K., Sayes, C. M., Guo, B., Pillai, S., Parsons, J. G., Wang, C., Yan, B., & Ma, X. (2019). Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Science of Total Environment, 653, 1042–1051.

    CAS  Google Scholar 

  • Shi, W., Han, Y., Guo, C., Zhao, X., Liu, S., Su, W., Zha, S., Wang, Y., & Liu, G. (2017). Immunotoxicity of nanoparticle nTiO2 to a commercial marine bivalve species, Tegillarca granosa. Fish & Shellfish Immunology, 66, 300–306.

    CAS  Google Scholar 

  • Shibata, S., Miyajima, K., Kimura, Y., & Yano, T. (2004). Heat-induced precipitation and light-induced dissolution of metal (Ag & Au) nanoparticles in hybrid film. Journal of Sol-Gel Science and Technology, 31, 123–130.

    CAS  Google Scholar 

  • Siddiqui, S., Goddard, R. H., & Bielmyer-Fraser, G. K. (2015). Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida. Aquatic Toxicology, 160, 205–213.

    CAS  PubMed  Google Scholar 

  • Song, K. C., Lee, S. M., Park, T. S., & Lee, B. S. (2009). Preparation of colloidal silver nanoparticles by chemical reduction method. Korean Journal of Chemical Engineering, 26, 153.

    CAS  Google Scholar 

  • Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L., & Sun, Z. (2010). Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicology Letters, 199, 389–397.

    CAS  PubMed  Google Scholar 

  • Srikanth, K., Pereira, E., Duarte, A. C., & Rao, J. V. (2016). Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma, 253, 873–884.

    CAS  PubMed  Google Scholar 

  • Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M. F., & Nilsson, A. (2010). Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2, 454–460.

    CAS  PubMed  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters. New York: Wiley.

    Google Scholar 

  • Sulzberger, B., & Laubscher, H. (1995). Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution. Marine Chemistry, 50, 103–115.

    CAS  Google Scholar 

  • Sun, R. W.-Y., Chen, R., Chung, N. P.-Y., Ho, C.-M., Lin, C.-L. S., & Che, C.-M. (2005). Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical Communications, 40, 5059–5061.

    Google Scholar 

  • Suppi, S., Kasemets, K., Ivask, A., Kuennis-Beres, K., Sihtmaee, M., Kurvet, I., Aruoja, V., & Kahru, A. (2015). A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. Journal of Hazardous Materials, 286, 75–84.

    CAS  PubMed  Google Scholar 

  • Tetard, L., Passian, A., Venmar, K. T., Lynch, R. M., Voy, B. H., Shekhawat, G., Dravid, V. P., & Thundat, T. (2008). Imaging nanoparticles in cells by nanomechanical holography. Nature Nanotechnology, 3, 501–505.

    CAS  PubMed  Google Scholar 

  • Tulve, N. S., Stefaniak, A. B., Vance, M. E., Rogers, K., Mwilu, S., LeBouf, R. L., Schwegler-Berry, D., Willis, R., Thomas, T. A., & Marr, L. C. (2015). Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures. International Journal of Hygiene and Environmental Health, 218, 345–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Jr., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villarreal, F. D., Das, G. K., Abid, A., Kennedy, I. M., & Kultz, D. (2014). Sublethal effects of CuO nanoparticles on Mozambique tilapia (Oreochromis mossambicus) are modulated by environmental salinity. PLoS One, 9, 88723.

    Google Scholar 

  • Wang, Z., von dem Bussche, A., Kabadi, P. K., Kane, A. B., & Hurt, R. H. (2013). Biological and environmental transformations of copper-based nanomaterials. ACS Nano, 7, 8715–8727.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warheit, D. B., Hoke, R. A., Finlay, C., Donner, E. M., Reed, K. L., & Sayes, C. M. (2007). Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 171, 99–110.

    CAS  PubMed  Google Scholar 

  • Warheit, D. B., Webb, T. R., Sayes, C. M., Colvin, V. L., & Reed, K. L. (2006). Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicological Sciences, 91, 227–236. https://doi.org/10.1093/toxsci/kfj140.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Liu, W., Xue, C., Zhou, S., Lan, F., Bi, L., Xu, H., Yang, X., & Zeng, F.-D. (2009). Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicology Letters, 191, 1–8.

    CAS  PubMed  Google Scholar 

  • Wuithschick, M., Birnbaum, A., Witte, S., Sztuck, M., Vainio, U., Pinna, N., Rademann, K., Emmerling, F., Kraehnert, R., & Polte, J. (2015). Turkevich in New Robes: Key questions answered for the most common gold nanoparticle synthesis. ACS Nano, 9, 7052–7071.

    CAS  PubMed  Google Scholar 

  • Yang, S. P., Bar-Ilan, O., Peterson, R. E., Heideman, W., Hamers, R. J., & Pedersen, J. A. (2013). Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environmental Science & Technology, 47, 4718–4725.

    CAS  Google Scholar 

  • Yasun, E., Chunmei Li, C., Barut, I., Janvier, D., Qiu, L., Cuia, C., & Tan, W. (2015). BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods. Nanoscale, 22, 10240–10248.

    Google Scholar 

  • Zhang, S., Zhang, X., Jiang, G., Zhu, H., Guo, S., Su, D., Lu, G., & Sun, S. (2014). Tuning nanoparticle structure and surface strain for catalysis optimization. Journal of the American Chemical Society, 136, 7734–7739.

    CAS  PubMed  Google Scholar 

  • Zhao, X., Wang, S., Wu, Y., You, H., & Lv, L. (2013). Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquatic Toxicology, 136–137, 49–59.

    PubMed  Google Scholar 

  • Zhong, Z., Patskovskyy, S., Bouvrette, P., Luong, J. H. T., & Gedanken, A. (2004). The surface chemistry of Au colloids and their interactions with functional amino acids. The Journal of Physical Chemistry. B, 108, 4046–4052.

    CAS  Google Scholar 

  • Zhu, X., Chang, Y., & Chen, Y. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78, 209–215.

    CAS  PubMed  Google Scholar 

  • Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., & Lang, Y. (2008). Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. Journal of Environmental Science and Health, Part A, 43, 278–284.

    CAS  Google Scholar 

Download references

Acknowledgments

J.G. Parsons is grateful for the generous support provided by a Departmental Grant from the Robert A. Welch Foundation (Grant No. BX-0048). M. Alcoutlabi would like to acknowledge the support from NSF PREM /award/ under grant No. DMR-1523577: UTRGV-UMN Partnership for Fostering Innovation by Bridging Excellence in Research and Student Success.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Parsons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parsons, J.G., Alcoutlabi, M., Dearth, R.K. (2021). Metal Oxide Nanoparticle Toxicity in Aquatic Organisms: An Overview of Methods and Mechanisms. In: Sharma, N., Sahi, S. (eds) Nanomaterial Biointeractions at the Cellular, Organismal and System Levels. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-65792-5_5

Download citation

Publish with us

Policies and ethics