Skip to main content

Periodic Astrometric Signal Recovery Through Convolutional Autoencoders

  • Chapter
  • First Online:
Intelligent Astrophysics

Abstract

Astrometric detection involves precise measurements of stellar positions, and it is widely regarded as the leading concept presently ready to find Earth-mass planets in temperate orbits around nearby sun-like stars. The TOLIMAN space telescope [39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric monitoring of bright binary stars. In particular the mission will be optimised to search for habitable-zone planets around \(\alpha \) Centauri AB. If the separation between these two stars can be monitored with sufficient precision, tiny perturbations due to the gravitational tug from an unseen planet can be witnessed and, given the configuration of the optical system, the scale of the shifts in the image plane are about one-millionth of a pixel. Image registration at this level of precision has never been demonstrated (to our knowledge) in any setting within science. In this paper, we demonstrate that a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified simulations of the TOLIMAN data and we present the full experimental pipeline to recreate out experiments from the simulations to the signal analysis. In future works, all the more realistic sources of noise and systematic effects present in the real-world system will be injected into the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://exoplanet.eu/catalog/.

  2. 2.

    https://cosmostatistics-initiative.org/focus/toliman1/.

References

  1. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimization of nonlinear transform codes for perceptual quality (2016)

    Google Scholar 

  2. Bessel, F.W.: On the variations of the proper motions of Procyon and Sirius. Mon. Not. R. Astron. Soc. 6, 136–141 (1844). https://doi.org/10.1093/mnras/6.11.136

    Article  Google Scholar 

  3. Casertano, S., Lattanzi, M.G., Sozzetti, A., Spagna, A., Jancart, S., Morbidelli, R., Pannunzio, R., Pourbaix, D., Queloz, D.: Double-blind test program for astrometric planet detection with Gaia. Astron. Astrophys. 482(2), 699–729 (2008). https://doi.org/10.1051/0004-6361:20078997

    Article  Google Scholar 

  4. Chen, D.: STEP mission: high-precision space astrometry to search for terrestrial exoplanets. J. Instrum. 9(04), C04040–C04040 (2014). https://doi.org/10.1088/1748-0221/9/04/c04040

  5. Cheng, T.-Y., Li, N., Conselice, C.J., Aragón-Salamanca, A., Dye, S., Metcalf, R.B.: Identifying strong lenses with unsupervised machine learning using convolutional autoencoder. Mon. Not. R. Astron. Soc. 494(3), 3750–3765 (2020). https://doi.org/10.1093/mnras/staa1015

    Article  Google Scholar 

  6. Clevert, D.-A., Unterthiner, T., Hochreiter S.: Fast and accurate deep network learning by exponential linear units (elus). In: 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings (2016). arXiv:1511.07289

  7. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274

  8. d’Aspremont, A., Ghaoui, L.E., Jordan, M.I., Lanckriet, G.R.: A direct formulation for sparse PCA using semidefinite programming. In: Advances in Neural Information Processing Systems, pp. 41–48 (2005)

    Google Scholar 

  9. Dunteman, G.H.: Principal Components Analysis, vol. 69. Sage, Thousand Oaks (1989)

    Google Scholar 

  10. Dumas, T., Roumy, A., Guillemot, C.: Autoencoder based image compression: can the learning be quantization independent? (2018)

    Google Scholar 

  11. ESA SP-1200: The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry Mission. ESA Special Publication 1200, January (1997)

    Google Scholar 

  12. Frontera-Pons, J., Sureau, F., Bobin, J., Le Floc’h, E.: Unsupervised feature-learning for galaxy SEDs with denoising autoencoders. Astron. Astrophys. (2017). https://doi.org/10.1051/0004-6361/201630240

    Article  Google Scholar 

  13. Gaia Collaboration, Prusti, T., de Bruijne, J.H.J., Brown, A.G.A., Vallenari, A., Babusiaux, C., et al.: The Gaia mission. Astron. Astrophys. 595, A1 (2016). https://doi.org/10.1051/0004-6361/201629272

  14. Gaia Collaboration, Brown, A.G.A., Vallenari, A., Prusti, T., de Bruijne, J.H.J., Babusiaux, C., et al.: Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018). https://doi.org/10.1051/0004-6361/201833051

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  16. GRAVITY Collaboration, Abuter, R., Accardo, M., Amorim, A., Anugu, N., Ávila, G., et al.: First light for gravity: phase referencing optical interferometry for the very large telescope interferometer. A&A 602, A94 (2017). https://doi.org/10.1051/0004-6361/201730838

  17. Guyon, O., Bendek, E.A., Eisner, J.A., Angel, R., Woolf, N.J., et al.: High-precision astrometry with a diffractive pupil telescope. Astrophys. J. Suppl. 200(2), 11 (2012). https://doi.org/10.1088/0067-0049/200/2/11

  18. Hao-ran, Q., Ji-ming, L., Jun-yi, W.: Stacked denoising autoencoders applied to star/galaxy classification. Chin. Astron. Astrophys. 41(2), 282–292 (2017). ISSN 0275-1062. https://doi.org/10.1016/j.chinastron.2017.04.009, http://www.sciencedirect.com/science/article/pii/S0275106217300656

  19. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  20. Jia, P., Li, X., Li, Z., Wang, W., Cai, D.: Point spread function modelling for wide-field small-aperture telescopes with a denoising autoencoder. Mon. Not. R. Astron. Soc. 493(1), 651–660 (2020). ISSN 0035-8711. https://doi.org/10.1093/mnras/staa319

  21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

  22. Lee, C.-H.: Exoplanets: past, present, and future. Galaxies 6(2), 51 (2018). ISSN 2075-4434. https://doi.org/10.3390/galaxies6020051

  23. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

    Google Scholar 

  24. Li, W., Xu, H., Ma, Z., Zhu, R., Hu, D., Zhu, Z., Gu, J., Shan, C., Zhu, J., Wu, X.-P.: Separating the EoR signal with a convolutional denoising autoencoder: a deep-learning-based method. Mon. Not. R. Astron. Soc. 485(2), 2628–2637 (2019). ISSN 0035-8711. https://doi.org/10.1093/mnras/stz582

  25. Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39(2), 447–462 (1976). https://doi.org/10.1007/BF00648343

    Article  Google Scholar 

  26. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 689–696 (2009)

    Google Scholar 

  27. Mayor, M., Queloz, D.: A Jupiter-mass companion to a solar-type star. Nature 378(6555), 355–359 (1995). https://doi.org/10.1038/378355a0

    Article  Google Scholar 

  28. Mousavi, A., Patel, A.B., Baraniuk, R.G.: A deep learning approach to structured signal recovery. In: Proceeding of 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2015). https://doi.org/10.1109/ALLERTON.2015.7447163

  29. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation (2015). CoRR arXiv:1505.04366

  30. Pearson, K.: On lines of closes fit to system of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901)

    Article  Google Scholar 

  31. Ranalli, P., Hobbs, D., Lindegren, L.: Astrometry and exoplanets in the Gaia era: a Bayesian approach to detection and parameter recovery. Astron. Astrophys. 614, A30 (2018). https://doi.org/10.1051/0004-6361/201730921

    Article  Google Scholar 

  32. Resnick, A.: Fourier optics and computational imaging, by Kedar Khare. Contemp. Phys. 58(1), 102–103 (2017). https://doi.org/10.1080/00107514.2016.1248491

  33. Scargle, J.D.: Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982). https://doi.org/10.1086/160554

  34. Shao, M., Marcy, G., Catanzarite, J.H., Edberg, S.J., Léger, A., Malbet, F., Queloz, D., Muterspaugh, M.W., Beichman, C., Fischer, D., Ford, E., Olling, R., Kulkarni, S., Unwin, S.C., Traub, W.: Astrometric detection of earthlike planets. In: Astro2010: The Astronomy and Astrophysics Decadal Survey, vol. 2010, p. 271, January (2009)

    Google Scholar 

  35. STScI Development Team: pysynphot: synthetic photometry software package (2013)

    Google Scholar 

  36. The Theia Collaboration, Boehm, C., Krone-Martins, A., Amorim, A., Anglada-Escude, G., Brandeker, A., et al.: Theia: Faint objects in motion or the new astrometry frontier (2017). arXiv e-prints arXiv:1707.01348

  37. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders (2017)

    Google Scholar 

  38. Toderici, G., Vincent, D., Johnston, N., Jin Hwang, S., Minnen, D., Shor, J., Covell, M.: Full resolution image compression with recurrent neural networks (2016)

    Google Scholar 

  39. Tuthill, P., Bendek, E., Guyon, O., Horton, A., Jeffries, B., Jovanovic, N., Klupar, P., Larkin, K., Norris, B., Pope, B., Shao, M.: The TOLIMAN space telescope. In: Creech-Eakman, M.J., Tuthill, P.G., Mérand, A. (eds.) Optical and Infrared Interferometry and Imaging VI, vol. 10701, pp. 432–441. International Society for Optics and Photonics, SPIE (2018). https://doi.org/10.1117/12.2313269

  40. Unwin, S.C., Shao, M., Tanner, A.M., Allen, R.J., Beichman, C.A., et al.: Taking the measure of the universe: precision astrometry with SIM PlanetQuest. Publ. Astron. Soc. Pac. 120(863), 38 (2008). https://doi.org/10.1086/525059

    Article  Google Scholar 

  41. van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks (2016)

    Google Scholar 

  42. VanderPlas, J.T.: Understanding the lomb-scargle periodogram. Astrophys. J. Suppl. Ser. 236(1), 16 (2018). https://doi.org/10.3847/1538-4365/aab766

    Article  Google Scholar 

  43. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  44. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML (2019)

    Google Scholar 

  45. Zhao, J.J., Mathieu, M., Goroshin, R., LeCun, Y.: Stacked what-where auto-encoders (2015). CoRR arXiv:1506.02351, http://dblp.uni-trier.de/db/journals/corr/corr1506.htmlZhaoMGL15

Download references

Acknowledgements

This work was partially produced during the \({2}^{\text {nd}}\) COIN-Focus: Toliman Event (COIN-Focus # 2) held in Rome, Italy, in November 2019. The COIN-Focus: Toliman participants acknowledge the fundamental support of the Breakthrough Initiatives. The Breakthrough Watch initiative and committee (notably Olivier Guyon, Pete Klupar & Pete Worden) have supported and framed the problem. We also acknowledge input and ideas from people in the wider TOLIMAN collaboration including Ben Pope, Barnaby Norris, Bryn Jeffries, Anthony Horton and others. MB acknowledges financial contributions from the agreement ASI/INAF 2018-23-HH.0, Euclid ESA mission - Phase D and the INAF PRIN-SKA 2017 program 1.05.01.88.04. EEOI acknowledges financial support from CNRS 2017 MOMENTUM grant under project Active Learning for Large Scale Sky Surveys. AKM acknowledges the support from the Portuguese Fundação para a Ciência e a Tecnologia (FCT) through grants SFRH/BPD/74697/2010, PTDC/FIS-AST/31546/2017 and from the Portuguese Strategic Programme UID/FIS/00099/2013 for CENTRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Delli Veneri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veneri, M.D. et al. (2021). Periodic Astrometric Signal Recovery Through Convolutional Autoencoders. In: Zelinka, I., Brescia, M., Baron, D. (eds) Intelligent Astrophysics. Emergence, Complexity and Computation, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-65867-0_8

Download citation

Publish with us

Policies and ethics