Skip to main content

Skyrmion Collapse Rate Computation via Forward Flux Sampling and Comparison with Langer’s Theory

  • Chapter
  • First Online:
Thermal Stability of Metastable Magnetic Skyrmions

Part of the book series: Springer Theses ((Springer Theses))

  • 254 Accesses

Abstract

Generally speaking, the problem of annihilation rates of skyrmions pertains to the realm of rare events. That is, in a direct Langevin dynamics simulation, few—if any—annihilation events are observed. That is because the small timesteps [1] required to properly resolve the precessional dynamics of magnetic spin systems entails that direct simulations are, in practice, limited to a few hundred nanoseconds. Since skyrmions are required to be stable on the scale of ten years at room temperature for data storage applications, a better method than brute force simulations is required. In this chapter, we demonstrate the use of a path sampling method for the simulation of rare events, namely the forward flux sampling method, to compute collapse rates of magnetic skyrmions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. García-Palacios JL, Lázaro FJ (1998) Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys Rev B 58:14937–14958

    Article  Google Scholar 

  2. Desplat L, Vogler C, Kim J-V, Stamps RL, Suess D (2020) Path sampling for lifetimes of metastable magnetic skyrmions and direct comparison with Kramers’ method. Phys Rev B 101(6):060403(R)

    Article  Google Scholar 

  3. Brown WF (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677–1686

    Article  Google Scholar 

  4. Coffey W, Kalmykov YP (2012) The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering, vol 27. World Scientific

    Google Scholar 

  5. Risken H (1996) The Fokker-Planck equation. Springer series in synergetic, vol 18. Springer, Berlin, Heidelberg

    Google Scholar 

  6. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul (TOMACS) 8(1):3–30

    Article  Google Scholar 

  7. Scholz W, Schrefl T, Fidler J (2001) Micromagnetic simulation of thermally activated switching in fine particles. J Magn Magn Mater 233(3):296–304

    Article  CAS  Google Scholar 

  8. Vogler C, Bruckner F, Bergmair B, Huber T, Suess D, Dellago C (2013) Simulating rare switching events of magnetic nanostructures with forward flux sampling. Phys Rev B 88(13):134409

    Article  Google Scholar 

  9. Allen RJ, Warren PB, ten Wolde PR (2005) Sampling rare switching events in biochemical networks. Phys Rev Lett 94:018104

    Article  Google Scholar 

  10. Allen RJ, Frenkel D, ten Wolde PR (2006) Simulating rare events in equilibrium or nonequilibrium stochastic systems. J Chem Phys 124(2):024102

    Article  Google Scholar 

  11. Allen RJ, Valeriani C, ten Wolde PR (2009) Forward flux sampling for rare event simulations. J Phys Condens Matter 21(46):463102

    Article  Google Scholar 

  12. Borrero EE, Escobedo FA (2009) Simulating the kinetics and thermodynamics of transitions via forward flux/umbrella sampling. J Phys Chem B 113(18):6434–6445

    Article  CAS  Google Scholar 

  13. Allen RJ, Frenkel D, ten Wolde PR (2006) Forward flux sampling-type schemes for simulating rare events: efficiency analysis. J Chem Phys 124(19):194111

    Article  Google Scholar 

  14. Borrero EE, Escobedo FA (2008) Optimizing the sampling and staging for simulations of rare events via forward flux sampling schemes. J Chem Phys 129(2):024115

    Article  Google Scholar 

  15. Vogler C, Bruckner F, Suess D, Dellago C (2015) Calculating thermal stability and attempt frequency of advanced recording structures without free parameters. J Appl Phys 117(16):163907

    Article  Google Scholar 

  16. Kalmykov YP (2004) The relaxation time of the magnetization of uniaxial single-domain ferromagnetic particles in the presence of a uniform magnetic field. J Appl Phys 96(2):1138–1145

    Article  CAS  Google Scholar 

  17. Coffey W, Garanin D, McCarthy D (2001) Crossover formulas in the Kramers theory of thermally activated escape rates—application to spin systems. Adv Chem Phys 117:483–765

    CAS  Google Scholar 

  18. Duff G (2008) Langer’s method for the calculation of escape rates and its application to systems of ferromagnets. PhD thesis, Dublin Institute of Technology

    Google Scholar 

  19. Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P et al (2016) Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat Nanotechnol 11(5):444–448

    Article  CAS  Google Scholar 

  20. von Malottki S, Dupé B, Bessarab P, Delin A, Heinze S (2017) Enhanced skyrmion stability due to exchange frustration. Sci Rep 7(1):12299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Desplat .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desplat, L. (2021). Skyrmion Collapse Rate Computation via Forward Flux Sampling and Comparison with Langer’s Theory. In: Thermal Stability of Metastable Magnetic Skyrmions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-66026-0_5

Download citation

Publish with us

Policies and ethics