Skip to main content

Integrated Tolerant Distributed Computing Network

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1337))

  • 414 Accesses

Abstract

Distributed computer network (DCN) consists of computing modules (CM). Two analytical performance models of tolerant computing networks are described in this paper. The first model is itself based on two models: a model for evaluating performance depending on the number of serviceable CM and a performance model depending on the method of ensuring the tolerance of the computer network. This model assumes that a computing module can’t be restored. The second model assumes that during the life cycle of a tolerant DCN its CM can be in one of three possible states: non-functional, functional – working, and functional – controlled. It is also assumed that the CM can be restored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qu, P., Zhang, Y., Zheng, W.: High Performance simulation of spiking neural network on GPGPUs. IEEE Trans. Parallel Distrib. Syst. 31(11), 2510–2523 (2020)

    Article  Google Scholar 

  2. Pons, L., Sahuquillo, J., Selfa, V., Petit, S., Pons, J.: Phase-aware cache partitioning to target both turnaround time and system performance. IEEE Trans. Parallel Distrib. Syst. 31(11), 2556–2568 (2020)

    Article  Google Scholar 

  3. Szustak, L., Wyrzykowski, R., Olas, T., Mele, V.: Correlation of performance optimizations and energy consumption for stencil-based application on Intel Xeon scalable processors. IEEE Trans. Parallel Distrib. Syst. 31(11), 2582–2593 (2020)

    Article  Google Scholar 

  4. KhudaBukhsh, W.R., Kar, S., Alt, B., Rizk, A., Koeppl, H.: Generalized cost-based job scheduling in very large heterogeneous cluster systems. IEEE Trans. Parallel Distrib. Syst. 31(11), 2594–2604 (2020)

    Article  Google Scholar 

  5. Li, J., et al.: QWEB: high-performance event-driven web architecture with QAT acceleration. IEEE Trans. Parallel Distrib. Syst. 31(11), 2633–2649 (2020)

    Article  Google Scholar 

  6. Srinuan, P., Yuan, X., Tzeng, N.: Cooperative memory expansion via OS kernel support for networked computing systems. IEEE Trans. Parallel Distrib. Syst. 31(11), 2650–2667 (2020)

    Article  Google Scholar 

  7. Akhremtsev, Y., Sanders, P., Schulz, C.: High-quality shared-memory graph partitioning. IEEE Trans. Parallel Distrib. Syst. 31(11), 2710–2722 (2020)

    Article  Google Scholar 

  8. Losada, N., Bosilca, G., Bouteiller, A., González, P., Martín, M.J.: Local rollback for resilient MPI applications with application-level checkpointing and message logging. Future Gener. Comput. Syst. 91, 450–464 (2019)

    Article  Google Scholar 

  9. Losada, N., González, P., Martín, M.J., Bosilca, G., Bouteiller, A., Teranishi, K.: Fault tolerance of MPI applications in exascale systems: The ULFM solution. Future Gener. Comput. Syst. 106, 467–481 (2020)

    Article  Google Scholar 

  10. Tang, X., Zhai, J., Yu, B., Chen, W., Zheng, W., Li, K.: An efficient in-memory checkpoint method and its practice on fault-tolerant HPL. IEEE Trans. Parallel Distrib. Syst. 29(4), 758–771 (2018)

    Article  Google Scholar 

  11. Wang, Z., Gao, L., Gu, Y., Bao, Y., Yu, G.: A fault-tolerant framework for asynchronous iterative computations in cloud environments. IEEE Trans. Parallel Distrib. Syst. 29(8), 1678–1692 (2018)

    Article  Google Scholar 

  12. Cores, I., Rodríguez, G., Martín, M.J., González, P.: Achieving checkpointing global consistency through a hybrid compile time and runtime protocol. Procedia Comput. Sci. 18, 169–178 (2013)

    Article  Google Scholar 

  13. Luo, Y., Manivannan, D.: Hope: a hybrid optimistic checkpointing and selective pessimistic message logging protocol for large scale distributed systems. Future Gener. Comput. Syst. 28(8), 1217–1235 (2012)

    Article  Google Scholar 

  14. Castro-Le, M., Meyer, H., Rexachs, D., Luque, E.: Fault tolerance at system level based on radic architecture. J. Parallel Distrib. Comput. 86, 98–111 (2015)

    Article  Google Scholar 

  15. Panadero, J., Wong, A., Rexachs, D., Luque, E.: P3S: a methodology to analyze and predict application scalability. IEEE Trans. Parallel Distrib. Syst. 29(3), 642–658 (2017)

    Article  Google Scholar 

  16. Mohror, K., Moody, A., Bronevetsky, G., de Supinski, B.R.: Detailed modeling and evaluation of a scalable multilevel checkpointing system. IEEE Trans. Parallel Distrib. Syst. 25(9), 2255–2263 (2014)

    Article  Google Scholar 

  17. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure recovery of MPI communication capability: design and rationale. Int. J. High Perform. Comput. Appl. 27(3), 244–254 (2013)

    Article  Google Scholar 

  18. Meyer, H., Muresano, R., Castro-León, M., Rexachs, D., Luque, E.: Hybrid message pessimistic logging. Improving current pessimistic message logging protocols. J. Parallel Distrib. Comput. 104, 206–222 (2017)

    Article  Google Scholar 

  19. Wong, A., Rexachs, D., Luque, E.: Parallel application signature for performance analysis and prediction. IEEE Trans. Parallel Distrib. Syst. 26(7), 2009–2019 (2015)

    Article  Google Scholar 

  20. Skrzypczak, J., Schintke, F., Schütt, T.: Fault-tolerant in-place consensus sequences. IEEE Trans. Parallel Distrib. Syst. 31(10), 2392–2405 (2020)

    Article  Google Scholar 

  21. Zhong, D., Bouteiller, A., Luo, X., Bosilca, G.: Runtime level failure detection and propagation in HPC systems. In: Proceedings of the 26th European MPI Users’ Group Meeting, EuroMPI 2019, pp. 1–11 (2019)

    Google Scholar 

  22. Castro, M., Rexachs, D., Luque, E.: Radic-based message passing fault tolerance system. In: Proceedings of the the 6th International Conference on Advanced Engineering Computing and Applications in Sciences, pp. 59–64 (2012)

    Google Scholar 

  23. Cao, J., et al.: System-level scalable checkpoint-restart for petascale computing. In: Proceedings of the IEEE 22nd International Conference on Parallel and Distributed Systems, pp. 932–941 (2016)

    Google Scholar 

  24. Hassani, A., Skjellum, A., Brightwell, R.: Design and evaluation of FA-MPI, a transactional resilience scheme for non-blocking MPI. In: Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 750–755 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Brekhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brekhov, O. (2020). Integrated Tolerant Distributed Computing Network. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks: Control, Computation, Communications. DCCN 2020. Communications in Computer and Information Science, vol 1337. Springer, Cham. https://doi.org/10.1007/978-3-030-66242-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66242-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66241-7

  • Online ISBN: 978-3-030-66242-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics