Skip to main content

Wireless Channel Modeling and Simulation with K Distribution

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN 2020)

Abstract

We study modeling of wireless channel with fading and shadowing effects using K distribution with modified Bessel function of the second kind with half integer order. This allows us to obtain probability density function and cumulative distribution function in closed form in terms of elementary functions and simplifies the calculation of exact average bit error rate. The problem of Monte Carlo simulation using random variables with K distribution is also addressed.

The publication has been prepared with the support of the “RUDN University Program 5–100”. The research was funded by RFBR, grant No. 19-08-00261.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, A., Kaveh, M.: K distribution: an appropriate substitute for rayleigh-lognormal distribution in fading-shadowing wireless channels. Electron. Lett. 34(9), 851–852 (1998). https://doi.org/10.1049/el:19980625

    Article  Google Scholar 

  2. Abdi, A., Kaveh, M.: Comparison of DPSK and MSK bit error rates for k and rayleigh-lognormal fading distributions. IEEE Commun. Lett. 4(4), 122–124 (2000). https://doi.org/10.1109/4234.841317

    Article  Google Scholar 

  3. Abraham, D.A.: Underwater Acoustic Signal Processing. MASP. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92983-5

    Book  Google Scholar 

  4. Amos, D.E.: Algorithm 644: a portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Softw. 12(3), 265–273 (1986). https://doi.org/10.1145/7921.214331

    Article  MathSciNet  MATH  Google Scholar 

  5. Charbit, M.: Digital Signal Processing with Python Programming. Wiley, Hoboken, December 2016. https://doi.org/10.1002/9781119373063

  6. Dagpunar, J.S.: Simulation and Monte Carlo. Wiley, Hoboken, January 2007. https://doi.org/10.1002/9780470061336

  7. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products, 7th edn. Elsevier (2007). https://doi.org/10.1016/c2010-0-64839-5

  8. Hansen, F., Meno, F.: Mobile fading–rayleigh and lognormal superimposed. IEEE Trans. Veh. Technol. 26(4), 332–335 (1977). https://doi.org/10.1109/t-vt.1977.23703

    Article  Google Scholar 

  9. Hauser, J.R.: Numerical Methods for Nonlinear Engineering Models. Springer, Netherlands (2009). https://doi.org/10.1007/978-1-4020-9920-5

  10. Jakeman, E., Pusey, P.N.: Significance of K distributions in scattering experiments. Phys. Rev. Lett. 40(9), 546–550 (1978). https://doi.org/10.1103/physrevlett.40.546

    Article  Google Scholar 

  11. Kiasaleh, K.: Performance of coherent DPSK free-space optical communication systems in k-distributed turbulence. IEEE Trans. Commun. 54(4), 604–607 (2006). https://doi.org/10.1109/tcomm.2006.873067

    Article  Google Scholar 

  12. Korenev, B.G.: Bessel Functions and Their Applications. CRC Press, Boca Raton, July 2002. https://doi.org/10.1201/b12551

  13. Laourine, A., Slim Alouini, M., Affes, S., Stephenne, A.: On the capacity of generalized-k fading channels. IEEE Trans. Wireless Commun. 7(7), 2441–2445 (2008). https://doi.org/10.1109/twc.2008.070103

    Article  Google Scholar 

  14. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949). https://doi.org/10.1080/01621459.1949.10483310

    Article  MATH  Google Scholar 

  15. Modest, M.: Radiative Heat Transfer, 3rd edn. Elsevier (2013). https://doi.org/10.1016/c2010-0-65874-3

  16. Samimi, H.: Performance analysis of free-space optical links with transmit laser selection diversity over strong turbulence channels. IET Commun. 5(8), 1039–1043 (2011). https://doi.org/10.1049/iet-com.2010.0075

    Article  MathSciNet  MATH  Google Scholar 

  17. Shankar, P.M.: Error rates in generalized shadowed fading channels. Wireless Pers. Commun. 28(3), 233–238 (2004). https://doi.org/10.1023/B:wire.0000032253.68423.86

    Article  Google Scholar 

  18. Shankar, P.M.: Fading and Shadowing in Wireless Systems. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53198-4

    Book  MATH  Google Scholar 

  19. Shreider, Y. (ed.): The Monte Carlo Method: The Method of Statistical Trials. Elsevier (1966). https://doi.org/10.1016/c2013-0-01870-1

  20. Simon, M.K., Alouini, M.S.: Digital Communication over Fading Channels, 2nd edn. Wiley, Hoboken, November 2004. https://doi.org/10.1002/0471715220

  21. Singh, R.K., Kumar, S.K.: A novel approximation for k distribution: closed-form BER using DPSK modulation in free-space optical communication. IEEE Photonics J. 9(5), 1–14 (2017). https://doi.org/10.1109/jphot.2017.2746763

    Article  Google Scholar 

  22. StĂĽber, G.L.: Principles of Mobile Communication. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55615-4

    Book  Google Scholar 

  23. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nature Methods 17(3), 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

  24. Ward, K.: Compound representation of high resolution sea clutter. Electron. Lett. 17(16), 561 (1981). https://doi.org/10.1049/el:19810394

    Article  Google Scholar 

  25. Ward, K., Tough, R., Watts, S.: Sea Clutter: Scattering, the K Distribution and Radar Performance. Institution of Engineering and Technology, 2nd edition edn. (2013). https://doi.org/10.1049/pbra025e

  26. Yu, C., Zelterman, D.: A general approximation to quantiles. Commun. Stat. Theory Methods 46(19), 9834–9841 (2016). https://doi.org/10.1080/03610926.2016.1222433

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Shorokhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shorokhov, S.G. (2020). Wireless Channel Modeling and Simulation with K Distribution. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks: Control, Computation, Communications. DCCN 2020. Communications in Computer and Information Science, vol 1337. Springer, Cham. https://doi.org/10.1007/978-3-030-66242-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66242-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66241-7

  • Online ISBN: 978-3-030-66242-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics