Skip to main content

Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Plant microbe interaction plays an important role in the growth and development of plants under different environmental conditions. Endophytic microbes frequently interact with plant root for its residence and form a symbiotic association with it. Exceptional endophytic fungus Piriformospora indica has the ability to form beneficial symbiotic association with the root of a wide range of plant species in varied environments and activate several growth promotion functions like improving nutrient status, increasing photosynthesis, modulating phytohormones, changing root architect, and activating defense mechanism against biotic stress as well as abiotic stress. Piriformospora indica acts as a biocontrol agent by acting as an elicitor for elicitation of defense response and activating multilevel defense mechanism against a wide range of plant pathogens. This fungus is ecologically very versatile and can help in survival of host plants under frequent varied environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi VAJM, Sepehri M (2016) Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis 69:9–19

    Article  CAS  Google Scholar 

  • Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci 263:107–115

    Article  CAS  PubMed  Google Scholar 

  • Abdelaziz ME, Abdelsattar M, Abdeldaym EA, Atia MAM, Mahmoud AWM, Saad MM et al (2019) Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hortic 256:108532

    Article  CAS  Google Scholar 

  • Ahlawat S, Saxena P, Ali A, Abdin M (2016) Piriformospora indica elicitation of withaferin A biosynthesis and biomass accumulation in cell suspension cultures of Withania somnifera. Symbiosis 69:37–46

    Article  CAS  Google Scholar 

  • Ahmadvand G, Hajinia S (2017) Effect of fungus Piriformospora indica on yield of soybean and millet in intercropping via competition indices. Electron J Crop Prod 9:155–178

    Google Scholar 

  • Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH (2013) A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Mol Biosyst 9:1498–1510

    Article  CAS  PubMed  Google Scholar 

  • Ansari MW, Bains G, Shukla A, Pant RC, Tuteja N (2013) Low temperature stress ethylene and not Fusarium, might be responsible for mango malformation. Plant Physiol Biochem 69:34–38

    Article  CAS  PubMed  Google Scholar 

  • Arora M, Saxena P, Abdin MZ, Varma A (2020) Interaction between Piriformospora indica and Azotobacter chroococcum diminish the effect of salt stress in Artemisia annua L. by enhancing enzymatic and non-enzymatic antioxidants. Symbiosis 80:61–73. https://doi.org/10.1007/s13199-019-00656-w

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bagde U, Prasad R, Varma A (2010) Interaction of mycobiont: Piriformospora indica with medicinal plants and plants of economic importance. Afr J Biotechnol 9:9214–9226

    Google Scholar 

  • Bagde US, Prasad R, Varma A (2011) Influence of culture filtrate of Piriformospora indica on growth and yield of seed oil in Helianthus annus. Symbiosis 53:83

    Article  Google Scholar 

  • Bagde US, Prasad R, Varma A (2014) Impact of culture filtrate of Piriformospora indica on biomass and biosynthesis of active ingredient aristolochic acid in Aristolochia elegans Mart. Int J Biol 6:29

    Google Scholar 

  • Bagheri AA, Saadatmand S, Niknam V, Nejadsatari T, Babaeizad V (2013) Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. Int J Adv Biol Biomed Res 1:1337–1350

    CAS  Google Scholar 

  • Bakshi M, Sherameti I, Meichsner D (2017) Piriformospora indica reprograms gene expression in Arabidopsis phosphate metabolism mutants but does not compensate for phosphate limitation. Front Microbiol 8:1262

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldi A, Jain A, Gupta N, Srivastava A, Bisaria V (2008) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30:1671

    Article  CAS  PubMed  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66

    Article  Google Scholar 

  • Blechert O, Kost G, Hassel A, Rexer K-H, Varma A (1999) First remarks on the symbiotic interaction between Piriformospora indica and terrestrial orchids. In: Mycorrhiza. Springer, Berlin, pp 683–688

    Chapter  Google Scholar 

  • Chowdhary K, Kaushik N, Coloma AG (2012) Endophytic fungi and their metabolites isolated from Indian medicinal plant. Phytochem Rev 11:467–485

    Article  CAS  Google Scholar 

  • Cruz LIB, Cruz MCM, de Castro GDM, Fagundes MCP, dos Santos JB (2015) Growth and nutrition of ‘Imperial’ pineapple nursery plants associated with the fungus Piriformospora indica and herbicide application. Semina: Ciências Agrárias 36:2407–2422

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AK, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7(1):103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Tripathi S, Varma A (2017) Use of Piriformospora indica as potential biological hardening agent for endangered micropropagated Picrorhiza kurroa Royel ex Benth. Proc Natl Acad Sci India B Biol Sci 87:799–805

    Article  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Dhinesh D, Ajithkumar K, Naik M, Sureshkumar P, Santhoshkumar A, Anith K (2015) Influence of Piriformospora indica on growth and flowering of tropical orchid Dendrobium. Int J Trop Agric 33:487–492

    Google Scholar 

  • Dikilitas M, Karakas S, Simsek E, Yadav AN (2021) Microbes from cold deserts and their applications in mitigation of cold stress in plants. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. CRC Press, Taylor & Francis, Boca Raton, pp 126-152. doi:10.1201/9780429328633-7

    Google Scholar 

  • Dolatabadi HK, Goltapeh EM, Jaimand K, Rohani N, Varma A (2011) Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J Basic Microbiol 51:33–39

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadi HK, Goltapeh EM, Moieni A, Varma A (2012) Evaluation of different densities of auxin and endophytic fungi (Piriformospora indica and Sebacina vermifera) on Mentha piperita and Thymus vulgaris growth. Afr J Biotechnol 11:1644–1650

    CAS  Google Scholar 

  • Druege U, Baltruschat H, Franken P (2007) Piriformospora indica promotes adventitious root formation in cuttings. Sci Hortic 112:422–426

    Article  Google Scholar 

  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R et al (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200

    Article  PubMed  Google Scholar 

  • Forutan M, Pirdashti H, Yaghoubian Y, Babaeizad V (2017) The effect of Piriformospora indica seed bio-priming and Paclobutrazol foliar spraying on tolerance to chilling stress in green beans (Phaseolus vulgaris L.). Environ Stress Crop Sci 10:459–474

    Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 113:19–33

    Article  CAS  PubMed  Google Scholar 

  • Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A et al (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Prot 94:289–301

    Article  CAS  Google Scholar 

  • Ghorbani A, Razavi S, Ghasemi Omran V, Pirdashti H (2018) Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biol 20:729–736

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani A, Omran VOG, Razavi SM, Pirdashti H, Ranjbar M (2019) Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status. Plant Cell Rep 38:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Gill R, Trivedi DK (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Gosal S, Kumar L, Kalia A, Chouhan R, Varma A (2007) Role of Piriformospora indica as biofertilizer for promoting growth and micronutrient uptake in Dendrocalamus strictus seedlings. J Bamboo Rattan 6:223–228

    Google Scholar 

  • Gosal S, Karlupia A, Gosal S, Chhibba I, Varma A (2010) Biotization with Piriformospora indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian J Biotechnol 9:289–297

    CAS  Google Scholar 

  • Hajipour A, Sohani MM, Babaeizad V, Hasani-Kumleh H (2015) The symbiotic effect of Piriformospora indica on induced resistance against bakanae disease in rice (Oryza sativa L.). J Plant Mol Breed 3:11–19

    Google Scholar 

  • Harman GE, Uphoff N (2019) Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica (Cairo) 2019:9106395

    Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

    Chapter  Google Scholar 

  • Hosseini F, Mosaddeghi MR, Dexter AR (2017) Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiol Biochem 118:107–120. https://doi.org/10.1016/j.plaphy.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  • Hosseini F, Mosaddeghi MR, Dexter AR, Sepehri M (2019) Effect of endophytic fungus Piriformospora indica and PEG-induced water stress on maximum root growth pressure and elongation rate of maize. Plant Soil 435:423–436. https://doi.org/10.1007/s11104-018-03909-7

    Article  CAS  Google Scholar 

  • Hu WH, Yan XH, Xiao YA, Zeng JJ, Qi HJ, Ogweno JO (2013) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic 150:232–237

    Article  CAS  Google Scholar 

  • Hussin S, Khalifa W, Geissler N, Koyro HW (2017) Influence of the root endophyte Piriformospora indica on the plant water relations, gas exchange and growth of Chenopodium quinoa at limited water availability. J Agron Crop Sci 203:373–384

    Article  CAS  Google Scholar 

  • Jangra D, Yadav RK (2015) Genetic variability and association studies for root infection to Piriformospora indica, nodulation, yield and its contributing traits in mung bean [Vigna radiata (L.) Wilczek]. Res Plant Biol 5:1–9

    Google Scholar 

  • Jha Y (2017a) Potassium mobilizing bacteria: enhance potassium intake in paddy to regulate membrane permeability and accumulate carbohydrates under salinity stress. Braz J Biol Sci 4(8):333–344

    Article  Google Scholar 

  • Jha Y (2017b) Cell water content and lignification in maize regulated by rhizobacteria under salinity. Braz J Biol Sci 4(7):9–18

    Article  Google Scholar 

  • Jha Y (2018a) Induction of anatomical, enzymatic, and molecular events in maize by PGPR under biotic stress. In: Meena V (ed) Role of rhizospheric microbes in soil. Springer, Singapore

    Google Scholar 

  • Jha Y (2018b) Effects of salinity on growth physiology, accumulation of osmo-protectant and autophagy-dependent cell death of two maize varieties. Russ Agric Sci 44(2):124–130

    Article  Google Scholar 

  • Jha Y (2019a) Endophytic bacteria as a modern tool for sustainable crop management under stress. In: Giri B, Prasad R, Wu QS, Varma A (eds) Biofertilizers for sustainable agriculture and environment, Soil biology, vol 55. Springer, Cham

    Chapter  Google Scholar 

  • Jha Y (2019b) Endophytic bacteria-mediated regulation of secondary metabolites for the growth induction in Hyptis suaveolens under stress. In: Egamberdieva D, Tiezzi A (eds) Medically important plant biomes: source of secondary metabolites, Microorganisms for sustainability, vol 15. Springer, Singapore

    Google Scholar 

  • Jha Y (2019c) The importance of zinc-mobilizing rhizosphere bacteria to the enhancement of physiology and growth parameters for paddy under salt-stress conditions. Jordan J Biol Sci 12(2):167–173

    CAS  Google Scholar 

  • Jha Y (2019d) Higher induction of defense enzymes and cell wall reinforcement in maize by root associated bacteria for better protection against Aspergillus niger. J Plant Prot Res 59(3):341–349

    CAS  Google Scholar 

  • Jha Y (2019e) Mineral mobilizing bacteria mediated regulation of secondary metabolites for proper photosynthesis in maize under stress. In: Photosynthesis productivity and environmental stress. Wiley, Hoboken, NJ, pp 197–213

    Chapter  Google Scholar 

  • Jha Y (2019f) Regulation of water status, chlorophyll content, sugar, and photosynthesis in maize under salinity by mineral mobilizing bacteria. In: Photosynthesis productivity and environmental stress. Wiley, Hoboken, NJ, pp 75–93

    Chapter  Google Scholar 

  • Jha Y (2019g) Endophytic bacteria mediated anti-autophagy and induced catalase, β-1,3-glucanases gene in paddy after infection with pathogen Pyricularia grisea. Indian Phytopathol 72:99–106

    Article  Google Scholar 

  • Jha Y. (2020) Plant microbiomes with phytohormones attribute for plant growth and adaptation under the stress conditions, agriculture, microorganisms for sustainability, pp 85–103

    Google Scholar 

  • Jha Y, Subramanian RB (2011) Endophytic Pseudomonas pseudoalcaligenes shows better response against the Magnaporthe grisea than a rhizospheric Bacillus pumilus in Oryza sativa (Rice). Arch Phytopathol Plant Prot 44:592–604

    Article  Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy physiology and enzymes level is regulated by rhizobacteria under saline stress. J Appl Bot Food Qual 85:168–173

    Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20(2):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB (2015) Reduced cell death and improved cell membrane integrity in rice under salinity by root associated bacteria. Theor Exp Plant Phys 3:227–235

    Article  Google Scholar 

  • Jha Y, Subramanian RB (2016) Rhizobacteria enhance oil content and physiological status of Hyptis suaveolens under salinity stress. Rhizosphere 1:33–35

    Article  Google Scholar 

  • Jha Y, Subramanian RB (2018) From interaction to gene induction: an eco-friendly mechanism of PGPR-mediated stress management in the plant. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response, Microorganisms for sustainability, vol 5. Springer, Singapore

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2012) Endophytic bacteria induced enzymes against M. grisea in O. sativa under biotic stress. Afr J Basic Appl Sci 3(4):136–146

    Google Scholar 

  • Jha Y, Subramanian RB, Patel N, Jithwa R (2014a) Identification of plant growth promoting rhizobacteria from Suaeda nudiflora plant and its effect on maize. Indian J Plant Prot 42(4):422–429

    Google Scholar 

  • Jha Y, Subramanian RB, Sahoo S (2014b) Antifungal potential of fenugreek coriander, mint, spinach herbs extracts against Aspergillus niger and Pseudomonas aeruginosa phyto-pathogenic fungi. Allelopath J 34:325–334

    Google Scholar 

  • Jha Y, Subrmanian RB, Mishra KK (2017) Role of plant growth promoting rhizobacteria in accumulation of heavy metal in metal contaminated soil. Life Sci Res 3:48–56

    Google Scholar 

  • Jiang W, Pan R, Wu C, Xu L, Abdelaziz ME, Oelmüller R et al (2020) Piriformospora indica enhances freezing tolerance and post-thaw recovery in Arabidopsis by stimulating the expression of CBF genes. Plant Signal Behav 15:1745472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M et al (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8:e26891

    Article  PubMed Central  CAS  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  CAS  PubMed  Google Scholar 

  • Khalid M, Hassani D, Liao J, Xiong X, Bilal M, Huang D (2018) An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulating cation transporter genes, phytohormones, and antioxidants in Brassica campestris ssp. Chinensis. Environ Exp Bot 153:89–99

    Article  CAS  Google Scholar 

  • Khalvandi M, Amerian M, Pirdashti H, Keramati S, Hosseini J (2019) Essential oil of peppermint in symbiotic relationship with Piriformospora indica and methyl jasmonate application under saline condition. Ind Crop Prod 127:195–202

    Article  CAS  Google Scholar 

  • Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, von Wettstein D, Kogel KH, Schäfer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One 7:e35502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, Hoboken, NJ, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019b) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA et al (2020a) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–279. https://doi.org/10.1016/B978-0-12-820528-0.00019-3

    Chapter  Google Scholar 

  • Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V et al (2020b) Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 157–176. https://doi.org/10.1016/B978-0-12-820526-6.00011-7

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020c) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al. (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere 31:43-75 https://doi.org/10.1016/S1002-0160(20)60057-1

    Google Scholar 

  • Kumar P, Chaturvedi R, Sundar D, Bisaria V (2016) Piriformospora indica enhances the production of pentacyclic triterpenoids in Lantana camara L. suspension cultures. Plant Cell Tissue Organ Cult 125:23–29

    Article  CAS  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A et al (2019a) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

    Article  CAS  Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A et al (2019b) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170. https://doi.org/10.1007/978-981-15-0690-1_8

    Chapter  Google Scholar 

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol 31:101883 https://doi.org/10.1016/j.bcab.2020.101883

    Google Scholar 

  • Kumari R, Kishan H, Bhoon Y, Varma A (2003) Colonization of cruciferous plants by Piriformospora indica. Curr Sci 85:1672–1674

    Google Scholar 

  • Kumari R, Giang PH, Sachdev M, Garg AP, Varma A (2004) Symbiotic fungi for eco-friendly environment: a perspective. Nat Prod Red 3:396–400

    Google Scholar 

  • Lakshmipriya P, Nath VS, Veena S, Anith K, Sreekumar J, Jeeva M (2017) Piriformospora indica, a cultivable endophyte for growth promotion and disease management in Taro (Colocasia esculenta (L.)). J Root Crops 42:107–114

    Google Scholar 

  • Lanza M, Haro R, Conchillo LB, Benito B (2019) The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress: fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity. Environ Microbiol 21:3364–3378

    Article  CAS  Google Scholar 

  • Li L, Li L, Wang X, Zhu P, Wu H, Qi S (2017) Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiol Biochem 119:211–223

    Article  CAS  PubMed  Google Scholar 

  • Li D, Mensah RA, Liu F, Tian N, Qi Q, Yeh K et al (2019) Effects of Piriformospora indica on rooting and growth of tissue-cultured banana (Musa acuminata cv. Tianbaojiao) seedlings. Sci Hortic 257:108649

    Article  Google Scholar 

  • Lin H-F, Xiong J, Zhou H-M, Chen C-M, Lin F-Z, Xu X-M et al (2019) Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC Plant Biol 19:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552

    Article  PubMed  PubMed Central  Google Scholar 

  • Madaan G, Gosal S, Gosal S, Saroa G, Gill M (2013) Effect of microbial inoculants on the growth and yield of micropropagated banana (Musa indica) cv. Grand Naine. J Hortic Sci Biotechnol 88:643–649

    Article  CAS  Google Scholar 

  • Meiyan W, Qiao W, Le X, Huizhi L, Ralf O, Wenying Z (2018) Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil 432:333–344

    Article  CAS  Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, Functional annotation and future challenges, vol 2. Springer, Singapore, pp 219–254. https://doi.org/10.1007/978-981-15-3204-7_10

    Chapter  Google Scholar 

  • Nanjundappa A, Bagyaraj DJ, Saxena AK (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Singh J, Achary VMM, Reddy MK (2015) Redox homeostasis via gene families of ascorbate-glutathione pathway. Front Environ Sci 3:25

    Article  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monnieri. J Basic Microbiol 53:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al (2021) Soil microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

    Chapter  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Varma A (2005) Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Electron J Biotechnol 8:1–6

    Article  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  PubMed  Google Scholar 

  • Rai M, Varma A, Pandey A (2004) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479–481

    Article  CAS  PubMed  Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

    Chapter  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020a) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020b) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India B 90:969. https://doi.org/10.1007/s40011-020-01168-0

    Article  CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Rathod D, Brestic M, Shao H (2011) Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn. Afr J Microbiol Res 5:4197–4206

    Article  CAS  Google Scholar 

  • Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202

    Article  CAS  PubMed  Google Scholar 

  • Saxena AK, Padaria JC, Gurjar GT, Yadav AN, Lone SA, Tripathi M et al (2020) Insecticidal formulation of novel strain of Bacillus thuringiensis AK 47. Indian Patent 340541

    Google Scholar 

  • Schuck S, Camehl I, Gilardoni PA, Oelmueller R, Baldwin IT, Bonaventure G (2012) HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus Piriformospora indica. Plant Physiol 160:929–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahabivand S, Aliloo AA (2016) Piriformospora indica promotes growth and antioxidant activities of wheat plant under cadmium stress. Yyü Tar Bil Derg (YYU J Agric Sci) 26:333–340

    Google Scholar 

  • Shahollari B, Varma A, Oelmüller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma G, Agrawal V (2013) Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol 29:1133–1138

    Google Scholar 

  • Sharma M, Chauhan G, Chandra A, Pushpangadan P, Varma A, Kharkwal H (2011) Piriformospora indica Varma and Franken mediated enhancement of biomass and diosgenin production in Trigonella foenum-graecum. Med Plants Int J Phytomed Rel Ind 3:217–226

    Google Scholar 

  • Sharma P, Kharkwal AC, Abdin M, Varma A (2014) Piriformospora indica improves micropropagation, growth and phytochemical content of Aloe vera L. plants. Symbiosis 64:11–23

    Article  CAS  Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

    Chapter  Google Scholar 

  • Shrivastava N, Jiang L, Li P, Sharma AK, Luo X, Wu S et al (2018) Proteomic approach to understand the molecular physiology of symbiotic interaction between Piriformospora indica and Brassica napus. Sci Rep 8:1–13

    Article  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh A, Sharma J, Rexer K-H, Varma A (2000) Plant productivity determinants beyond minerals, water and light: Piriformospora indica—a revolutionary plant growth promoting fungus. Curr Sci 79:1548–1554

    Google Scholar 

  • Singh A, Singh A, Varma A (2002) Piriformospora indica—in vitro raised leguminous plants: a new dimension in establishment and phyto-promotion. Ind J Biotechnol 1:371–376

    Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Su Z-Z, Wang T, Shrivastava N, Chen Y-Y, Liu X, Sun C et al (2017) Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiol Res 199:29–39

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

    Chapter  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Research perspectives, vol 1. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Soni R, Yadav AN, Goel R (2021) Cold Adapted Microorganisms: Survival Mechanisms and Applications. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. CRC Press, Taylor & Francis, Boca Raton, pp 177–192

    Google Scholar 

  • Symbiosis UU, Sowjanya K, Varma A (2013) Piriformospora indica: a versatile root endophytic symbiont. Symbiosis 60:107. https://doi.org/10.1007/s13199-013-0246-y

    Article  Google Scholar 

  • Tanha SR, Ghasemnezhad A, Babaeizad V (2014) A study on the effect of endophyte fungus, Piriformospora indica, on the yield and phytochemical changes of globe artichoke (Cynara scolymus L.) leaves under water stress. Int J Adv Biol Biomed Res 2:1907–1921

    CAS  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Thürich J, Meichsner D, Furch AC, Pfalz J, Krüger T, Kniemeyer O et al (2018) Arabidopsis thaliana responds to colonisation of Piriformospora indica by secretion of symbiosis-specific proteins. PLoS One 13:e0209658

    Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-030-45971-0_8

    Chapter  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable Agriculture. In: Yadav AN (ed) Recent Trends in Mycological Research: Volume 1: Agricultural and Medical Perspective. Springer International Publishing, Cham, pp 269–291. https://doi.org/10.1007/978-3-030-60659-6_12

  • Upadhyaya CP, Gururani MA, Prasad R, Verma A (2013) A cell wall extract from Piriformospora indica promotes tuberization in potato (Solanum tuberosum L.) via enhanced expression of Ca+ 2 signaling pathway and lipoxygenase gene. Appl Biochem Biotechnol 170:743–755

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Verma S, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012a) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131

    Article  Google Scholar 

  • Varma A, Sherameti I, Tripathi S, Prasad R, Das A, Sharma M et al (2012b) 13 the symbiotic fungus Piriformospora indica. In: Fungal associations. Springer, Berlin, pp 231–254

    Chapter  Google Scholar 

  • Varma A, Chordia P, Bakshi M, Oelmüller R (2013) Introduction to Sebacinales. In: Piriformospora indica. Springer, Berlin, pp 3–24

    Chapter  Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Vyas S, Nagori R, Purohit SD (2008) Root colonization and growth enhancement of micropropagated Feronia limonia (L.) Swingle by Piriformospora indica—a cultivable root endophyte. Int J Plant Dev Biol 2:128–132

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen-Ying Z, Ai-Ai W, Ruo-Chao H, Ting Y (2014) Endophytic fungus Piriformospora indica promotes growth and confers drought tolerance in sesame (Sesamum indicum L.). ChinJ Oil Crop Sci 36:71

    Google Scholar 

  • Wu M, Wei Q, Xu L, Li H, Oelmüller R, Zhang W (2018) Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant Soil 432:333–344

    Article  CAS  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, Agricultural and medical perspective, vol 1. Springer, Cham

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693. https://doi.org/10.1016/j.jbiosc.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. https://doi.org/10.1007/s11274-014-1768-z

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A et al (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629. https://doi.org/10.1007/s13213-014-0897-9

    Article  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016b) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha TCK, Singh B, Chauahan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5(6):45–57

    CAS  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Kumari Sugitha TC et al (2018) Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: Singh BP, Gupta VK, Passari AK (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Kaur T, Devi R, Yadav N (2020a) Agriculturally important fungi for crop productivity: current research and future challenges. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer International Publishing, Cham, pp 275–286. https://doi.org/10.1007/978-3-030-45971-0_12

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Kaur T, Devi R, Yadav N (2020b) Functional annotation of agriculturally important fungi for crop protection: current research and future challenges. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, Functional annotation for crop protection, vol 2. Springer International Publishing, Cham, pp 347–356. https://doi.org/10.1007/978-3-030-48474-3_12

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020c) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020d) Agriculturally important fungi for sustainable agriculture, Functional annotation for crop protection, vol 2. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020e) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020f) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2020g) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1-4 doi:10.7324/JABB.2021.91ed

    Google Scholar 

  • Yadav AN, Kaur T, Devi R, Kour D, Yadav N (2021) Biodiversity and Biotechnological Applications of Extremophilic Microbiomes: Current Research and Future Challenges. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. CRC Press, Taylor & Francis, Boca Raton, pp 278-290. doi:10.1201/9780429328633-16

    Google Scholar 

  • Yang Y-Z, Zha F, Zhang J-M, Dong S-Q, Zhu J-Q (2012) Effects of Piriformospora indica on cotton resistance to waterlogged stress. Adv J Food Sci Technol 4:413–416

    Google Scholar 

  • Yun P, Xu L, Wang S-S, Shabala L, Shabala S, Zhang W-Y (2018) Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul 86:323–331

    Article  CAS  Google Scholar 

  • Zarea MJ, Hajinia S, Karimi N, Mohammadi Goltapeh E, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146. https://doi.org/10.1016/j.soilbio.2011.11.006

  • Zhang W, Wang J, Xu L, Wang A, Huang L, Du H et al (2018) Drought stress responses in maize are diminished by Piriformospora indica. Plant Sign Behav 13:e1414121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, Y., Yadav, A.N. (2021). Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Usmani, Z. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-67561-5_11

Download citation

Publish with us

Policies and ethics