Skip to main content

Graph Diffusion Wasserstein Distances

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12458))

Abstract

Optimal Transport (OT) for structured data has received much attention in the machine learning community, especially for addressing graph classification or graph transfer learning tasks. In this paper, we present the Diffusion Wasserstein (\(\mathtt {DW}\)) distance, as a generalization of the standard Wasserstein distance to undirected and connected graphs where nodes are described by feature vectors. \(\mathtt {DW}\) is based on the Laplacian exponential kernel and benefits from the heat diffusion to catch both structural and feature information from the graphs. We further derive lower/upper bounds on \(\mathtt {DW}\) and show that it can be directly plugged into the Fused Gromov Wasserstein (\(\mathtt {FGW}\)) distance that has been recently proposed, leading - for free - to a DifFused Gromov Wasserstein distance (\(\mathtt {DFGW}\)) that allows a significant performance boost when solving graph domain adaptation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.aliens-lyon.fr/dbarbe/graph_diffusion_wasserstein.

  2. 2.

    A paired Student’s t-test rejects the null hypothesis with p-value equal to \(2. 10^{-11}\).

References

  1. Al-Mohy, A., Higham, N.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comp. 33(2), 488–511 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bruzzone, L., Marconcini, M.: Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 770–787 (2010)

    Article  Google Scholar 

  3. Chung, F.: The heat kernel as the pagerank of a graph. Proc. Nat. Acad. Sci. 104(50), 19735–19740 (2007)

    Article  Google Scholar 

  4. Courty, N., Flamary, R., Tuia, D.: Domain adaptation with regularized optimal transport. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 274–289. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_18

    Chapter  Google Scholar 

  5. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865 (2017)

    Article  Google Scholar 

  6. Defferrard, M., Martin, L., Pena, R., Perraudin, N.: Pygsp: graph signal processing in python, October 2017. https://doi.org/10.5281/zenodo.1003158

  7. Deshpande, Y., Sen, S., Montanari, A., Mossel, E.: Contextual stochastic block models. In: NeurIPS 2018, Montréal, Canada, pp. 8590–8602 (2018)

    Google Scholar 

  8. Flamary, R., Courty, N.: Pot python optimal transport library (2017), https://github.com/rflamary/POT

  9. Hammond, D.K., Gur, Y., Johnson, C.R.: Graph diffusion distance: A difference measure for weighted graphs based on the graph Laplacian exponential kernel. In: GlobalSIP, pp. 419–422. IEEE (2013)

    Google Scholar 

  10. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Networks 5(2), 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  11. Kantorovich, L.: On the translocation of masses. Doklady Acad. Sci. USSR 37, 199–201 (1942)

    MathSciNet  Google Scholar 

  12. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Network Sci. 5(1), 1–42 (2019). https://doi.org/10.1007/s41109-019-0195-3

    Article  Google Scholar 

  13. Maretic, H.P., Gheche, M.E., Chierchia, G., Frossard, P.: GOT: an optimal transport framework for graph comparison. CoRR abs/1906.02085 (2019)

    Google Scholar 

  14. Maretic, H.P., Gheche, M.E., Minder, M., Chierchia, G., Frossard, P.: Wasserstein-based graph alignment. cs.LG abs/2003.06048 (2020)

    Google Scholar 

  15. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie royale des sciences de Paris (1781)

    Google Scholar 

  16. Mémoli, F.: Gromov-Wasserstein distances and the metric approach to object matching. Found. Comput. Math. 11(4), 417–487 (2011)

    Article  MathSciNet  Google Scholar 

  17. Ortega, A., Frossard, P., Kovačević, J., Moura, J., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)

    Article  Google Scholar 

  18. Peyré, G., Cuturi, M.: Computational Optimal Transport. arXiv, March 2018

    Google Scholar 

  19. Peyré, G., Cuturi, M., Solomon, J.: Gromov-Wasserstein averaging of kernel and distance matrices. Int. Conf. on Mach. Learn. 48, 2664–2672 (2016)

    Google Scholar 

  20. Redko, I., Morvant, E., Habrard, A., Sebban, M., Bennani, Y.: Advances in Domain Adaptation Theory, p. 187, Elsevier, Amsterdam, August 2019. ISBN 978-1-78-548236-6

    Google Scholar 

  21. Thanou, D., Dong, X., Kressner, D., Frossard, P.: Learning heat diffusion graphs. IEEE Trans. Sig. Info. Proc. Over Networks 3(3), 484–499 (2017)

    Google Scholar 

  22. Tremblay, N., Puy, G., Gribonval, R., Vandergheynst, P.: Compressive spectral clustering. In: 33rd International Conference on Machine Learning, New York, USA, June 2016

    Google Scholar 

  23. Tsitsulin, A., Mottin, D., Karras, P., Bronstein, A., Müller, E.: Netlsd: Hearing the shape of a graph. In: ACM International Conference on Knowledge Discovery and Data Mining, London (UK), pp. 2347–2356, New York, USA (2018)

    Google Scholar 

  24. Vayer, T., Courty, N., Tavenard, R., Chapel, L., Flamary, R.: Optimal transport for structured data with application on graphs. Int. Conf. on Mach. Learn. 97, 6275–6284 (2019)

    Google Scholar 

Download references

Acknowledgements

Work supported by the ACADEMICS grant of the IDEXLYON, project of the Université de Lyon, PIA operated by ANR-16-IDEX-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Barbe .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 55 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbe, A., Sebban, M., Gonçalves, P., Borgnat, P., Gribonval, R. (2021). Graph Diffusion Wasserstein Distances. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12458. Springer, Cham. https://doi.org/10.1007/978-3-030-67661-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67661-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67660-5

  • Online ISBN: 978-3-030-67661-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics