Skip to main content

Potentiating Learning Through Augmented Reality and Serious Games

  • Chapter
  • First Online:
Springer Handbook of Augmented Reality

Abstract

A significant progress in technological support aroused a general interest in areas such as data visualization, augmented and virtual reality, and artificial intelligence. The innovative capabilities of these technologies increased the potential and relevance of data visualization and interaction services. Traditional teaching and learning methods look insufficient in a context where digitalization invades processes and tools. A strong claim is made for aligning those methods with such technological developments and thus allows students to acquire the skills to successfully integrate the emergent information society. Given the widespread of mobile devices, and the increasing role of computer games in education, their combined use has the potential to play a central role in responding to these demands. This chapter aims at exploring the integration of serious games with virtual environments and technologies as a complement to facilitate and enhance learning. More specifically, we present and discuss the motivation, design, and development process of three tools that use augmented reality in combination with a serious game to teach (i) mathematics, (ii) to explore the platonic solids, (iii) and to teach coding. Further, three pilot user studies are described and discussed and confirm the potential of these tools as powerful new teaching/learning tools for education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gandolfi, E.: Virtual reality and augmented reality. In: Kennedy, R.E., Ferdig, K. (eds.) Handbook of Research on K-12 Online and Blended Learning, 2nd edn, pp. 545–561. ETC (2018)

    Google Scholar 

  2. Chen, Y., Wang, Q., Chen, H., Song, X., Tang, H., Tian, M.: An overview of augmented reality technology. J. Phys. Conf. Ser. 1237, 022082 (2019). https://doi.org/10.1088/1742-6596/1237/2/022082

    Article  Google Scholar 

  3. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77-D, 1321–1329 (1994)

    Google Scholar 

  4. Mann, S.: “Mediated reality with implementations for everyday life,” Presence Connect, vol. 1, (2002).

    Google Scholar 

  5. Mann, S.: Mediated Reality. In: M.I.T. Media Lab Perceptual Computing Section, Cambridge, MA (1994)

    Google Scholar 

  6. Kesim, M., Ozarslan, Y.: Augmented reality in education: current technologies and the potential for education. Procedia-Social Behav. Sci. 47, 297–302 (2012). https://doi.org/10.1016/j.sbspro.2012.06.654

    Article  Google Scholar 

  7. Liarokapis, F., Macan, L., Malone, G., Rebolledo-Mendez, G., Freitas, S.D.: A pervasive augmented reality serious game. In: 2009 Conference in Games and Virtual Worlds for Serious Applications, pp. 148–155. IEEE (2009). https://doi.org/10.1109/VS-GAMES.2009.40

    Chapter  Google Scholar 

  8. Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997). https://doi.org/10.1162/pres.1997.6.4.355

    Article  Google Scholar 

  9. Çöltekin, A., et al.: Extended reality in spatial sciences: a review of research challenges and future directions. ISPRS Int. J. Geo-Inf. 9(7), 439 (2020). https://doi.org/10.3390/ijgi9070439

    Article  Google Scholar 

  10. Brown, M. et al.: “2020 Educause horizon report teaching and learning edition,” Louisville, CO, 2020. [Online]. Available: https://www.learntechlib.org/p/215670.

  11. Raghavan, R., Rao, P.: “Immersive learning for the future workforce accenture extended reality (Xr),” 2018. Accessed 20 Jan 2021. [Online]. Available: https://www.accenture.com/_acnmedia/pdf-86/accenture-extended-reality-immersive-training.pdf.

  12. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., Ivkovic, M.: Augmented reality technologies, systems and applications. Multimed. Tools Appl. 51(1), 341–377 (2011). https://doi.org/10.1007/s11042-010-0660-6

    Article  Google Scholar 

  13. Holz, T., Campbell, A.G., O’Hare, G.M.P., Stafford, J.W., Martin, A., Dragone, M.: MiRA—Mixed reality agents. Int. J. Hum. Comput. Stud. 69(4), 251–268 (2011). https://doi.org/10.1016/j.ijhcs.2010.10.001

    Article  Google Scholar 

  14. Chen, C., Tsai, Y.: Interactive augmented reality system for enhancing library instruction in elementary schools. Comput. Educ. 59(2), 638–652 (2012). https://doi.org/10.1016/j.compedu.2012.03.001

    Article  Google Scholar 

  15. Khan, T., Johnston, K., Ophoff, J.: The impact of an augmented reality application on learning motivation of students. Adv. Human-Comput Interact. 2019 (2019). https://doi.org/10.1155/2019/7208494

  16. Lin, T.-J., Duh, H.B.-L., Li, N., Wang, H.-Y., Tsai, C.-C.: An investigation of learners’ collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Comput. Educ. 68, 314–321 (2013). https://doi.org/10.1016/j.compedu.2013.05.011

    Article  Google Scholar 

  17. Nincarean, D., Alia, M.B., Halim, N.D.A., Rahman, M.H.A.: Mobile augmented reality: the potential for education. Procedia – Soc. Behav. Sci. 103, 657–664 (2013). https://doi.org/10.1016/j.sbspro.2013.10.385

    Article  Google Scholar 

  18. Estapa, A., Nadolny, L.: The effect of an augmented reality enhanced mathematics lesson on student achievement and motivation. J. STEM Educ. 16(3), 40–49 (2015)

    Google Scholar 

  19. Iftene, A., Trandabăt, D.: Enhancing the attractiveness of learning through augmented reality. Procedia Comput. Sci. 126, 166–175 (2018). https://doi.org/10.1016/j.procS.2018.07.220

  20. Wu, H.-K., Lee, S.W.-Y., Chang, H.-Y., Liang, J.-C.: Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 62, 41–49 (2013). https://doi.org/10.1016/j.compedu.2012.10.024

    Article  Google Scholar 

  21. Velev, D., Zlateva, P.: Virtual reality challenges in education and training. Int. J. Learn. Teach. 3(1), 33–37 (2017). https://doi.org/10.18178/ijlt.3.1.33-37

    Article  Google Scholar 

  22. Pellens, M., Hounsell, M., Silva, A.: Augmented reality and serious games: a systematic literature mapping. In: 2017 19th Symposium on Virtual and Augmented Reality (SVR), pp. 227–235 (2017). https://doi.org/10.1109/SVR.2017.37

    Chapter  Google Scholar 

  23. Bakri, F., Marsal, O., Muliyati, D.: Textbooks equipped with augmented reality technology for physics topic in high-school. J. Penelit. Pengemb. Pendidik. Fis. 5(2), 113–122 (2019). https://doi.org/10.21009/1.05206

    Article  Google Scholar 

  24. Behzadan, A.H., Menassa, C.C., Kamat, V.R.: Georeferenced augmented reality for discovery-based learning in civil engineering. In: Transforming Engineering Education, pp. 199–228. American Society of Civil Engineers (2018)

    Chapter  Google Scholar 

  25. Rebollo, C., Remolar, I., Rossano, V., Lanzilotti, R.: Multimedia augmented reality game for learning math. Multimed. Tools Appl., 1–18 (2021). https://doi.org/10.1007/s11042-021-10821-3

  26. Wei, X., Weng, D., Liu, Y., Wang, Y.: Teaching based on augmented reality for a technical creative design course. Comput. Educ. 81, 221–234 (2015). https://doi.org/10.1016/j.compedu.2014.10.017

    Article  Google Scholar 

  27. Goh, E.S., Sunar, M.S., Ismail, A.: 3D object manipulation techniques in handheld mobile augmented reality interface: a review. IEEE Access. 24(7), 1 (2019). https://doi.org/10.1109/ACCESS.2019.2906394

    Article  Google Scholar 

  28. Dünser, A., Walker, L., Horner, H., Bentall, D.: Creating interactive physics education books with augmented reality.”In: 24th Australian Computer-Human Interaction Conference, pp. 107–114, 2012 doi: https://doi.org/10.1145/2414536.2414554.

  29. Kaufmann, H.: The potential of augmented reality in dynamic geometry education. In: 12th International Conference On Geometry and Graphics (ISGG), Ago, pp. 6–10 (2006)

    Google Scholar 

  30. Bower, M., Howe, C., McCredie, N., Robinson, A., Grover, D.: Augmented reality in education — cases, places, and potentials. EMI. Educ. Media Int. 51 (2014). https://doi.org/10.1080/09523987.2014.889400

  31. Diegmann, P., Schmidt-Kraepelin, M., Van den Eynden, S., Basten, D.: Benefits of augmented reality in educational environments – a systematic literature review. In: 12th International Conference on Wirtschaftsinformatik, March 4–6 2015, Osnabrück, 2015, pp. 1542–1556, Accessed 16 Feb 2021. [Online]. Available: https://aisel.aisnet.org/wi2015/103.

  32. Bacca, J., Baldiris, S., Fabregat, R., Graf, S., Kinshuk: Augmented reality trends in education: a systematic review of research and applications. Educ. Technol. Soc. 17(4), 133–149 (2014)

    Google Scholar 

  33. Di Serio, Á., Ibáñez, M.B., Kloos, C.D.: Impact of an augmented reality system on students’ motivation for a visual art course. Comput. Educ. 68, 586–596 (2013). https://doi.org/10.1016/j.compedu.2012.03.002

    Article  Google Scholar 

  34. Gopalan, V., Zulkifli, A. N., Bakar, J. A. A.: A study of students’ motivation using the augmented reality science textbook. In: AIP Conference Proceedings, 2016, vol. 1761, no. 1, p. 20040, doi: https://doi.org/10.1063/1.4960880.

  35. Akçayır, M., Akçayır, G.: Advantages and challenges associated with augmented reality for education: a systematic review of the literature. Educ. Res. Rev. 20, 1–11 (2017). https://doi.org/10.1016/j.edurev.2016.11.002

    Article  Google Scholar 

  36. Billinghurst, M., Dünser, A.: Augmented reality in the classroom. Comput. (Long. Beach. Calif). 45, 56–63 (2012). https://doi.org/10.1109/MC.2012.111

    Article  Google Scholar 

  37. Svedström, T.: Gesture interfaces. Aalto Univ. Sch. Sci. Technol. Inf. Nat. Sci. (2010)

    Google Scholar 

  38. Billinghurst, M.: Augmented reality in education. New horizons Learn. 12(5), 1–5 (2002)

    Google Scholar 

  39. Ventura. Geometry AR. https://www.venturaes.com/iosapps/geometryar.html (2020). Accessed 04 Mar 2021

  40. GeoGebra. App downloads – GeoGebra. https://www.geogebra.org/download (2020). Accessed 04 Mar 2021

  41. Studios, O.: Android apps by Omens Studios – APK Support. https://apk.support/developer/Omens+Studios (2018). Accessed 04 Mar 2021

  42. Heath, M., Callahan, D.: Home – AR Flashcards. https://arflashcards.com/ (2019). Accessed 04 Mar 2021

  43. Inness, S.: Numbeanies number forest. http://www.simoneinness.com/projects/numbeanies.html (2020). Accessed 04 Mar 2021

  44. “Sparklab – Chemistry app in AR/VR – Apps no Google Play.” https://play.google.com/store/apps/details?id=ge.arx.sparklab.android&hl=pt&gl=US Accessed 11 Apr 2021

  45. “Complete anatomy | advanced 3D anatomy platform.” https://3d4medical.com/ Accessed 11 Apr 2021

  46. “Catchy Words AR on the App Store.” https://apps.apple.com/us/app/catchy-words-ar/id1266039244 Accessed 11 Apr 2021

  47. “Plickers.” https://get.plickers.com/ Accessed 11 Apr 2021

  48. Radu, I., MacIntyre, B.: Augmented-reality scratch: a children’s authoring environment for augmented-reality experiences. In: Proceedings of the 8th International Conference on Interaction Design and Children, pp. 210–213 (2009). https://doi.org/10.1145/1551788.1551831

    Chapter  Google Scholar 

  49. Wang, D., Zhang, C., Wang, H.: T-Maze: a tangible programming tool for children. In: Proceedings of the 10th International Conference on Interaction Design and Children, pp. 127–135 (2011). https://doi.org/10.1145/1999030.1999045

    Chapter  Google Scholar 

  50. Jin, Q., Wang, D., Deng, X., Zheng, N., Chiu, S.: AR-Maze: a tangible programming tool for children based on AR technology. In: Proceedings of the 17th ACM Conference on Interaction Design and Children, pp. 611–616 (2018). https://doi.org/10.1145/3202185.3210784

    Chapter  Google Scholar 

  51. Goyal, S., Vijay, R.S., Monga, C., Kalita, P.: Code bits: an inexpensive tangible computational thinking toolkit for K-12 curriculum. In: Proceedings of the TEI’ 16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 441–447 (2016). https://doi.org/10.1145/2839462.2856541

    Chapter  Google Scholar 

  52. Fusté, A., Amores, J., Ha, D., Jongejan, J., Pitaru, A.: Paper cubes: evolving 3D characters in augmented reality using recurrent neural networks. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), pp. 31–33 (2017)

    Google Scholar 

  53. Fuste, A., Schmandt, C.: HyperCubes: a playful introduction to computational thinking in augmented reality. In: Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts, pp. 379–387 (2019). https://doi.org/10.1145/3341215.3356264

    Chapter  Google Scholar 

  54. Vincur, J., Konopka, M., Tvarozek, J., Hoang, M., Navrat, P.: Cubely: Virtual Reality Block-Based Programming Environment. (2017). doi: https://doi.org/10.1145/3139131.3141785.

  55. Prensky, M.: Digital Game-Based Learning, vol. 1. McGraw-Hill, New York (2001)

    Google Scholar 

  56. Gros, B.: The impact of digital games in education. First Monday. 8(7), 6–26 (2003)

    Google Scholar 

  57. Malone, T.: Toward a theory of intrinsically motivating instruction. Cogn. Sci. 5(4), 333–369 (1981). https://doi.org/10.1207/s15516709cog0504_2

    Article  Google Scholar 

  58. Pivec, M., Kearney, P.: Games for learning and learning from games. Organizacija. 40(6) (2007)

    Google Scholar 

  59. Gee, J.P.: What video games have to teach us about learning and literacy. Comput. Entertain. 1(1), 20 (2003). https://doi.org/10.1145/950566.950595

    Article  Google Scholar 

  60. Gee, J.P.: Learning by design: games as learning machines. Interact. Educ. Multimed. IEM. 8, 15–23 (2004)

    Google Scholar 

  61. Gee, J. P.: Good Video Games and Good Learning: Collected Essays on Video Games, Learning and Literacy, 2nd Ed., no. April 2008. New York: P. Lang, (2007).

    Google Scholar 

  62. Martinho, C., Santos, P., Prada, R.: Design e Desenvolvimento de Jogos. FCA (2014)

    Google Scholar 

  63. Li, J., Spek, E., Feijs, L., Wang, F., Hu, J.: Augmented reality games for learning: a literature review. In: Streitz, N., Markopoulos, P. (eds.) Lecture Notes in Computer Science. Distributed, Ambient and Pervasive Interactions, vol. 10291, pp. 612–626. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-58697-7_46

    Chapter  Google Scholar 

  64. Malone, T., Lepper, M.: Intrinsic motivation and instructional effectiveness in computer-based education. In: Snow, R.E., Farr, M.J. (eds.) Conative and Affective Process Analyses, pp. 255–286. Lawrence Erlbaum Associates, Mahwah (1987)

    Google Scholar 

  65. Drigas, A.S., Pappas, M.A.: On line and other game-based learning for mathematics. Int. J. Online Eng. 11(4), 62–67 (2015). https://doi.org/10.3991/ijoe.v11i4.4742

    Article  Google Scholar 

  66. Griffiths, M.: The educational benefits of videogames. Educ. Heal. 20(3), 47–51 (2002)

    Google Scholar 

  67. Yusoff, A., Crowder, R., Gilbert, L., Wills, G.: A conceptual framework for serious games. In: Ninth IEEE 2009 International Conference on Advanced Learning Technologies, pp. 21–23. IEEE (2009). https://doi.org/10.1109/ICALT.2009.19

    Chapter  Google Scholar 

  68. Verhaegh, J., Fontijn, W., Jacobs, A.: On the benefits of tangible interfaces for educational games. In: 2008 Second IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, pp. 141–145 (2008). https://doi.org/10.1109/DIGITEL.2008.37

    Chapter  Google Scholar 

  69. Prensky, M.: Don’t Bother Me, Mom—I’m Learning: How Computer and Video Games are Preparing Your Kids for 21st Century Success—and How You Can Help! (2006)

    Google Scholar 

  70. Zyda, M.: From visual simulation to virtual reality to games. Computer (Long. Beach. Calif). 38(9), 25–32 (2005). https://doi.org/10.1109/MC.2005.297

    Article  Google Scholar 

  71. Csikszentmihalyi, M.: Creativity: Flow and the Psychology of Discovery And Invention. HarperPerennial (1996)

    Google Scholar 

  72. Mitchell, A., Savill-Smith, C.: The use of Computer and Video Games for Learning: A Review of the Literature. Learning and Skills Development Agency, London (2004)

    Google Scholar 

  73. Piaget, J.: The theory of stages in cognitive development. In: Green, D., Ford, M.P., Flamer, G.B. (eds.) Measurement and Piaget, pp. 1–11. McGraw-Hill, New York (1971)

    Google Scholar 

  74. Vygotsky, L.: Play and its role in the mental development of the child. J Russ East Eur Psychol. 42(4), 35–54 (1933)

    Google Scholar 

  75. Nacke, L., Drachen, A., Goebel, S.: Methods for evaluating gameplay experience in a serious gaming context. Int. J. Comput. Sci. Sport. 9(2) (2010)

    Google Scholar 

  76. Schrier, K.: Using augmented reality games to teach 21st century skills. In: ACM SIGGRAPH 2006 Educators Program, pp. 15–es. ACM, New York (2006)

    Chapter  Google Scholar 

  77. Leitão, R.: Aprendizagem baseada em jogos: realidade aumentada no ensino de sólidos geométricos. Universidade Aberta, R Leitão (2013)

    Google Scholar 

  78. Tori, R., Kirner, C., Siscoutto, R.A.: Fundamentos e tecnologia de realidade virtual e aumentada. Editora SBC, Porto Alegre (2006)

    Google Scholar 

  79. Yuen, S.C.-Y., Yaoyuneyong, G., Johnson, E.: Augmented reality: an overview and five directions for AR in education. J. Educ. Technol. Dev. Exch. 4(1), 11 (2011). https://doi.org/10.18785/jetde.0401.10

    Article  Google Scholar 

  80. Ferrer, V., Perdomo, A., Rashed-Ali, H., Fies, C., Quarles, J.: How does usability impact motivation in augmented reality serious games for education? In: 2013 5th International Conference on Games and virtual worlds for serious applications (VS-GAMES), pp. 1–8 (2013)

    Google Scholar 

  81. Cerqueira, J., Cleto, B., Moura, J.M., Sylla, C.: Visualizing platonic solids with augmented reality. In: Proceedings of the 17th ACM Conference on Interaction Design and Children – IDC ’18, pp. 489–492 (2018). https://doi.org/10.1145/3202185.3210761

    Chapter  Google Scholar 

  82. Cleto, B., Moura, J.M., Ferreira, L., Sylla, C.: Codecubes – playing with cubes and learning to code. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 265, pp. 538–543 (2019). https://doi.org/10.1007/978-3-030-06134-0_58

    Chapter  Google Scholar 

  83. Cleto, B., Sylla, C., Ferreira, L., Moura, J.M.: CodeCubes: coding with augmented reality. In: OpenAccess Series in Informatics, vol. 81, (2020). https://doi.org/10.4230/OASIcs.ICPEC.2020.7

    Chapter  Google Scholar 

  84. Cleto, B., Sylla, C., Ferreira, L., Moura, J.M.: ‘Play and learn’: exploring CodeCubes. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 307 LNICST, pp. 34–42 (2020). https://doi.org/10.1007/978-3-030-40180-1_4

    Chapter  Google Scholar 

  85. Cerqueira, J., Moura, J.M., Sylla, C., Ferreira, L.: An augmented reality mathematics serious game. In: OpenAccess Series in Informatics, vol. 81, (2020). https://doi.org/10.4230/OASIcs.ICPEC.2020.6

    Chapter  Google Scholar 

  86. Cerqueira, J., Sylla, C., Moura, J.M., Ferreira, L.: Learning basic mathematical functions with augmented reality. Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST. 265, 508–513 (2019). https://doi.org/10.1007/978-3-030-06134-0_53

    Article  Google Scholar 

  87. “2D 3D Game Creator & Editor | Augmented / Virtual Reality Software | Game Engine | Unity.” https://unity.com/products/unity-platform Accessed 13 Apr 2021

  88. “Vuforia Developer Portal |.” https://developer.vuforia.com/ Accessed 13 Apr 2021

  89. “Exposição Digital Games @ IPCA no GNRation – EST.” https://est.ipca.pt/noticia/exposicao-digital-games-ipca-no-gnration/ Accessed 11 Apr 2021

  90. Sabuncuoğlu, A., Erkaya, M., Buruk, O.T., Göksun, T.: Code notes: designing a low-cost tangible coding tool for/with children. In: Proceedings of the 17th ACM Conference on Interaction Design and Children, pp. 644–649 (2018). https://doi.org/10.1145/3202185.3210791

    Chapter  Google Scholar 

  91. “Learn today, build a brighter tomorrow. | Code.org.” https://code.org/ Accessed 11 Apr 2021

  92. Code.org – Classic Maze.” https://studio.code.org/hoc/1 Accessed 11 Apr 2021

  93. “NyARToolkit for processing | NyARToolkit project.” https://nyatla.jp/nyartoolkit/wp/?page_id=166 Accessed 11 Apr 2021

  94. Processing.org.” https://processing.org/ Accessed 11 Apr 2021

  95. “Ani – An animation library for Processing.” http://www.looksgood.de/libraries/Ani/ Accessed 11 Apr 2021

  96. Herpich, F., Guarese, R., Tarouco, L.: A comparative analysis of augmented reality frameworks aimed at the development of educational applications. Creat. Educ. 08, 1433–1451 (2017). https://doi.org/10.4236/ce.2017.89101

    Article  Google Scholar 

  97. Johnson, R., Christensen, L.: Educational Research: Quantitative, Qualitative, and Mixed Approaches. SAGE Publications, Thousand Oaks (2019)

    Google Scholar 

  98. Creswell, J., Poth, C.: Qualitative Inquiry and Research Design: Choosing Among Five Approaches. Sage publications, London (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. M. Cerqueira , B. Cleto , J. M. Moura , C. Sylla or L. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cerqueira, J.M., Cleto, B., Moura, J.M., Sylla, C., Ferreira, L. (2023). Potentiating Learning Through Augmented Reality and Serious Games. In: Nee, A.Y.C., Ong, S.K. (eds) Springer Handbook of Augmented Reality. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-67822-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67822-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67821-0

  • Online ISBN: 978-3-030-67822-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics