Skip to main content

Augmented and Mixed Reality for Shipbuilding

  • Chapter
  • First Online:
Springer Handbook of Augmented Reality

Abstract

Industry 4.0 is paving the way for the automation of many industrial fields that can improve the efficiency of manufacturing processes. Such an improvement can be remarkable on industries that involve a relevant number of complex processes, which need to be optimized individually in order to increase their overall performance. Shipbuilding is one of such industrial fields that can benefit from the application of the principles of Industry 4.0 and from the use of the latest technologies. Among the different Industry 4.0 technologies, augmented reality (AR) and mixed reality (MR) can be especially helpful for enhancing shipbuilding tasks, since they can be applied to many of them, while providing useful and attractive visual interfaces that enable shipyard operators to receive information on the tasks they are working on and that allow them to interact with physical and virtual elements. This chapter first reviews the state of the art on the application of commercial and academic AR/MR solutions to shipbuilding. Moreover, the most relevant shipbuilding tasks to be enhanced with AR/MR and their challenges are analyzed. Furthermore, this chapter also details the latest and most promising AR and MR hardware, software, and communication architectures aimed at being deployed in shipyard workshops and on ships under construction. As a result, this chapter provides a thorough review of the most recent developments on the application of AR and MR to shipbuilding and includes useful guidelines for future developers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, H., Yu, W., Griffith, D., Golmie, N.: A survey on industrial internet of things: a cyber-physical systems perspective. IEEE Access 6, 78238–78259 (2018). https://doi.org/10.1109/ACCESS.2018.2884906

    Article  Google Scholar 

  2. Aceto, G., Persico, V., Pescapé, A.: A survey on information and communication technologies for industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges. IEEE Commun. Surv. Tutorials 21(4), 3467–3501 (2019). https://doi.org/10.1109/COMST.2019.2938259

  3. Fernández-Caramés, T.M., Fraga-Lamas, P.: Towards post-quantum blockchain: a review on blockchain cryptography resistant to quantum computing attacks. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.2968985

  4. Fernández-Caramés, T.M.: From pre-quantum to post-quantum IoT security: a survey on quantum-resistant cryptosystems for the internet of things. IEEE Internet Things J. (2019). https://doi.org/10.1109/JIOT.2019.2958788

  5. Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on human-centered IoT-connected smart labels for the industry 4.0. IEEE Access 6, 25939–25957 (2018). https://doi.org/10.1109/ACCESS.2018.2833501

    Article  Google Scholar 

  6. Fraga-Lamas, P., Fernández-Caramés, T.M., Blanco-Novoa, O., Vilar-Montesinos, M.A.: A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access 6, 13358–13375 (2018)

    Article  Google Scholar 

  7. Goldman Sachs Goldman: Sachs Global Investment Research Technical Report: Virtual and Augmented Reality—Understanding the Race for the Next Computing Platform (2016)

    Google Scholar 

  8. Mizell, D.W.: Virtual reality and augmented reality in aircraft design and manufacturing. In: Proceedings of WESCON/94. IEEE, Anaheim (1994)

    Google Scholar 

  9. Wohlgemuth, W., Triebfürst, G.: Arvika: Augmented reality for development, production and service. In: Proceedings of DARE 2000, pp. 151–152. ACM, Elsinore (2000)

    Google Scholar 

  10. Friedrich, W.: Arvika-augmented reality for development, production and service. In: Proceedings of the International Symposium on Mixed and Augmented Reality, pp. 3–4. IEEE/ACM, Darmstadt (2002)

    Google Scholar 

  11. Fruend, J., Matysczok, C., Radkowski, R.: AR-based product design in automobile industry. In: Proceedings of the IEEE International Workshop Augmented Reality Toolkit, pp. 1–2. IEEE, Darmstadt (2002)

    Google Scholar 

  12. Lee, W., Park, J.: Augmented foam: a tangible augmented reality for product design. In: Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 106–109. IEEE/ACM, Vienna (2005)

    Google Scholar 

  13. Novak-Marcincin, J., Barna, J., Janak, M., Novakova-Marcincinova, L., Torok, J.: Visualization of intelligent assembling process by augmented reality tools application. In: Proceedings of the IEEE International Symposium on Logistics and Industrial Informatics, pp. 33–36. IEEE, Smolenice (2012)

    Google Scholar 

  14. Park, H.S., Choi, H.W., Park, J.W.: Augmented reality based cockpit module assembly system. In: Proceedings of the International Conference on Smart Manufacturing Application, pp. 130–135. IEEE, Gyeonggi-do (2008)

    Google Scholar 

  15. Li, G., Xi, N., Chen, H., Saeed, A.: Augmented reality enhanced “top-down” nano-manufacturing. In: Proceedings of the IEEE Conference on Nanotechnology, pp. 352–354. IEEE, Munich (2004)

    Google Scholar 

  16. Kocisko, M., Teliskova, M., Baron, P., Zajac, J.: An integrated working environment using advanced augmented reality techniques. In: Proceedings of the International Conference on Industrial Engineering and Applications, pp. 279–283. IEEE, St. Petersburg (2017)

    Google Scholar 

  17. Molina Vargas, D.G., Vijayan, K.K., Mork, O.J.: Augmented reality for future research opportunities and challenges in the shipbuilding industry: a literature review. Proc. Manuf. 45, 497 – 503 (2020). https://doi.org/10.1016/j.promfg.2020.04.063

    Google Scholar 

  18. Morais, D., Waldie, M., et al.: How to implement tech in shipbuilding: charting the course to success. In: SNAME Maritime Convention. The Society of Naval Architects and Marine Engineers (2018)

    Google Scholar 

  19. Hjartholm, B.T.: Augmented reality for operator support in Norwegian shipyards: a study of applications, benefits and challenges (2019)

    Google Scholar 

  20. Matsuo, K., Rothenburg, U., Stark, R.: Application of ar technologies to sheet metal forming in shipbuilding. In: Abramovici, M., Stark, R. (eds.) Smart Product Engineering, pp. 937–945. Springer, Berlin (2013)

    Chapter  Google Scholar 

  21. Aiteanu, D., Hillers, B., Graser, A.: A step forward in manual welding: demonstration of augmented reality helmet. In: Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 309–310. IEEE/ACM, Tokyo (2003)

    Google Scholar 

  22. Andersen, R.S., Bøgh, S., Moeslund, T.B., Madsen, O.: Task space HRI for cooperative mobile robots in fit-out operations inside ship superstructures. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication, pp. 880–887. IEEE, New York (2016)

    Google Scholar 

  23. Fast, K., Gifford, T., Yancey, R.: Virtual training for welding. In: Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 298–299. IEEE/ACM, Arlington (2004)

    Google Scholar 

  24. Lee, G.A., Yang, U., Son, W., Kim, Y., Jo, D., Kim, K.H., Choi, J.S.: Virtual reality content-based training for spray painting tasks in the shipbuilding industry. ETRI J. 32(5), 695–703 (2010)

    Article  Google Scholar 

  25. Flatt, H., Koch, N., Röcker, C., Günter, A., Jasperneite, J.: A context-aware assistance system for maintenance applications in smart factories based on augmented reality and indoor localization. In: Proceedings of the IEEE Conference on Emerging Technologies Factory Automation, pp. 1–4. IEEE, Luxembourg (2015)

    Google Scholar 

  26. Havard, V., Baudry, D., Louis, A., Mazari, B.: Augmented reality maintenance demonstrator and associated modelling. In: Proceedings of IEEE Virtual Reality, pp. 329–330. IEEE, Arles (2015)

    Google Scholar 

  27. Henderson, S., Feiner, S.: Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Trans. Vis. Comput. Graph. 17(10), 1355–1368 (2011)

    Article  Google Scholar 

  28. Olbrich, M., Wuest, H., Riess, P., Bockholt, U.: Augmented reality pipe layout planning in the shipbuilding industry. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, pp. 269–270. IEEE, Basel (2011)

    Google Scholar 

  29. Oh, Y.J., Park, K.Y., Kim, E.K.: Mobile augmented reality system for design drawing visualization. In: Proceedings of the International Conference on Advanced Communication Technology, pp. 1296–1300. IEEE, Pyeongchang (2014)

    Google Scholar 

  30. Newport News Shipbuilding: http://nns.huntingtoningalls.com/ar/

  31. Index AR Solutions: https://www.indexarsolutions.com/about-us/

  32. Virtual Reality Technology Transforms Design of UK Warships: http://www.baesystems.com/en/article/virtual-reality-technology-transforms-design-of-uk-warships

  33. Navantia official web page: https://www.navantia.es

  34. Fernández-Caramés, T.M., Fraga-Lamas, P., Suárez-Albela, M., Vilar-Montesinos, M.A.: A fog computing and cloudlet based augmented reality system for the industry 4.0 shipyard. Sensors 18(6), 1798 (2018)

    Google Scholar 

  35. Blanco-Novoa, O., Fernández-Caramés, T.M., Fraga-Lamas, P., Vilar-Montesinos, M.A.: A practical evaluation of commercial industrial augmented reality systems in an industry 4.0 shipyard. IEEE Access 6, 8201–8218 (2018)

    Article  Google Scholar 

  36. PTC’s Vuforia official web page: http://www.vuforia.com

  37. Fraga-Lamas, P., Noceda-Davila, D., Fernández-Caramés, T.M., Diaz-Bouza, M.A., Vilar-Montesinos, M.A.: Smart pipe system for a shipyard 4.0. Sensors 16(12), 2186 (2016)

    Google Scholar 

  38. Fraga-Lamas, P., Fernández-Caramés, T.M., Noceda-Davila, D., Vilar-Montesinos, M.A.: RSS stabilization techniques for a real-time passive UHF RFID pipe monitoring system for smart shipyards. In: Proceedings of the IEEE International Conference on RFID, pp. 161–166. IEEE, Phoenix (2017)

    Google Scholar 

  39. Fraga-Lamas, P., Fernández-Caramés, T.M., Noceda-Davila, D., Diaz-Bouza, M.A., Vilar-Montesinos, M.A., Pena-Agras, J.D., Castedo, L.: Enabling automatic event detection for the pipe workshop of the shipyard 4.0. In: Proceedings of FITCE, pp. 20–27. IEEE, Madrid (2017)

    Google Scholar 

  40. Blanco-Novoa, O., Fraga-Lamas, P., Vilar-Montesinos, M.A., Fernández-Caramés, T.: Towards the internet of augmented things: an open-source framework to interconnect IoT devices and augmented reality systems. In: Proceedings of the 6th International Electronic Conference on Sensors and Applications. MDPI (2019)

    Google Scholar 

  41. Microsoft HoloLens official web page: http://www.hololens.com

  42. Schroeder, G., Steinmetz, C., Pereira, C.E.: Visualising the digital twin using web services and augmented reality. In: Proceedings of the IEEE International Conference on Industrial Informatics. IEEE, Poitiers (2016)

    Google Scholar 

  43. Smparounis, K., Mavrikios, D., Pappas, M., Xanthakis, V., Viganò, G.P., Pentenrieder, K.: A virtual and augmented reality approach to collaborative product design and demonstration. In: Proceedings of the IEEE International Technology Management Conference. IEEE, Lisbon (2008)

    Google Scholar 

  44. Matysczok, C., Wojdala, A.: Rendering of highly polygonal augmented reality applications on a scalable PC-cluster architecture. In: Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE/ACM, Arlington (2004)

    Google Scholar 

  45. Hernández-Rojas, D., Fernández-Caramés, T.M., Fraga-Lamas, P., Escudero, C.J.: Design and practical evaluation of a family of lightweight protocols for heterogeneous sensing through BLE beacons in IoT telemetry applications. Sensors 18, 57 (2017)

    Article  Google Scholar 

  46. Hernández-Rojas, D.L., Fernández-Caramés, T.M., Fraga-Lamas, P., Escudero, C.J.: A plug-and-play human-centered virtual teds architecture for the web of things. Sensors 18(7), 2052 (2018)

    Article  Google Scholar 

  47. Blanco-Novoa, O., Fernández-Caramés, T.M., Fraga-Lamas, P., Castedo, L.: A cost-effective IoT system for monitoring indoor radon gas concentration. Sensors 18(7), 2198 (2018)

    Article  Google Scholar 

  48. Fernández-Caramés, T.M., Fraga-Lamas, P.: Towards the internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 7(12), 405 (2018)

    Article  Google Scholar 

  49. Fernández-Caramés, T.M., Fraga-Lamas, P., Suárez-Albela, M., Diaz-Bouza, M.A.: A fog computing based cyber-physical system for the automation of pipe-related tasks in the industry 4.0 shipyard. Sensors 18(6), 1961 (2018)

    Google Scholar 

  50. Zhang, J., Ong, S.K., Nee, A.Y.C.: A volumetric model-based CNC simulation and monitoring system in augmented environments. In: Proceedings of the International Conference on Cyberworlds, pp. 33–42. IEEE, Lausanne (2006)

    Google Scholar 

  51. Rao, Q., Grünler, C., Hammori, M., Chakrabort, S.: Design methods for augmented reality in-vehicle infotainment systems. In: Proceedings of the ACM/EDAC/IEEE Design Automation Conference, pp. 1–6. IEEE, San Francisco (2014)

    Google Scholar 

  52. Langfinger, M., Schneider, M., Stricker, D., Schotten, H.D.: Addressing security challenges in industrial augmented reality systems. In: Proceedings of IEEE International Conference on Industrial Informatics. IEEE, Emdem (2017)

    Google Scholar 

  53. Schneider, M., Rambach, J., Stricker, D.: Augmented reality based on edge computing using the example of remote live support. In: Proceedings of the Annual International Conference on Industrial Technology. IEEE (2017)

    Google Scholar 

  54. Dolui, K., Datta, S.K.: Comparison of edge computing implementations: fog computing, cloudlet and mobile edge computing. In: Proceedings of the Global Internet of Things Summit, pp. 1–6. IEEE, Geneva (2017)

    Google Scholar 

  55. Fraga-Lamas, P., Fernández-Caramés, T.M.: A review on blockchain technologies for an advanced and cyber-resilient automotive industry. IEEE Access 2019(7), 17578–17598 (2019)

    Article  Google Scholar 

  56. Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on the application of blockchain for the next generation of cybersecure industry 4.0 smart factories. IEEE Access 7, 45201–45218 (2019)

    Article  Google Scholar 

  57. Fernández-Caramés, T.M., Froiz-Miguez, I., Blanco-Novoa, O., Fraga-Lamas, P.: Enabling the internet of mobile crowdsourcing health things: a mobile fog computing, blockchain and IoT based continuous glucose monitoring system for diabetes mellitus research and care. Sensors 19(15), 3319 (2019)

    Article  Google Scholar 

  58. Fernández-Caramés, T.M., Blanco-Novoa, O., Froiz-Miguez, I., Fraga-Lamas, P.: Towards an autonomous industry 4.0 warehouse: a UAV and blockchain-based system for inventory and traceability applications in big data-driven supply chain management. Sensors 19(10), 2394 (2019)

    Google Scholar 

  59. Suárez-Albela, M., Fernández-Caramés, T.M., Fraga-Lamas, P., Castedo, L.: A practical evaluation of a high-security energy-efficient gateway for IoT fog computing applications. Sensors 17(9), 1978 (2017)

    Article  Google Scholar 

  60. Suárez-Albela, M., Fraga-Lamas, P., Castedo, L., Fernández-Caramés, T.M.: Clock frequency impact on the performance of high-security cryptographic cipher suites for energy-efficient resource-constrained IoT devices. Sensors 19(1), 15 (2019)

    Article  Google Scholar 

  61. Fernández-Caramés, T.M., Fraga-Lamas, P., Suárez-Albela, M., Castedo, L.: A Methodology for Evaluating Security in Commercial RFID Systems, chap. Radio Frequency Identification, Prof. Paulo Crepaldi (Ed.). InTech (2017)

    Google Scholar 

  62. Fernández-Caramés, T.M., Fraga-Lamas, P., Suárez-Albela, M., Castedo, L.: Reverse engineering and security evaluation of commercial tags for RFID-based IoT applications. Sensors 17(1), 28 (2016)

    Article  Google Scholar 

  63. Caudell, T.P., Mizell, D.W.: Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the International Conference on System Sciences, vol. ii, pp. 659–669. IEEE, Kauai (1992)

    Google Scholar 

  64. Syberfeldt, A., Danielsson, O., Gustavsson, P.: Augmented reality smart glasses in the smart factory: Product evaluation guidelines and review of available products. IEEE Access 5, 9118–9130 (2017)

    Article  Google Scholar 

  65. Thomas, B.H., Sandor, C.: What wearable augmented reality can do for you. IEEE Pervasive Comput. 8(2), 8–11 (2009)

    Article  Google Scholar 

  66. Fernandez, T.M., Rodas, J., Escudero, C.J., Iglesia, D.I.: Bluetooth sensor network positioning system with dynamic calibration. In: Proceedings of the International Symposium on Wireless Communication Systems. IEEE, Trondheim (2007)

    Google Scholar 

  67. ATHEER ThirdEye Mixed Reality Smart Glasses and AR software. ThirdEye official web page: https://www.thirdeyegen.com

  68. EPSON Moverio BT-200 (Developer Version Only) official web page: https://epson.com/Clearance-Center/Wearables/Moverio- BT-200-Smart-Glasses-%28Developer-Version-Only%29/p/V11 H560020

  69. EPSON Moverio BT-300 (AR/Developer Edition) official web page: https://epson.com/For-Work/Wearables/Smart-Glasses/Mo verio-BT-300-Smart-Glasses-%28AR-Developer-Edition%29-/p/ V11H756020

  70. EPSON Moverio BT-350 Technical Information: https://tech.moverio.epson.com/en/bt-350/

  71. EPSON Moverio BT-30C Technical Information: https://tech.moverio.epson.com/en/bt-30c/

  72. EPSON Moverio BT-35E Technical Information: https://tech.moverio.epson.com/en/bt-35e/

  73. EPSON Moverio BT-2000 Technical Information: https://tech.moverio.epson.com/en/bt-2000/

  74. Optinvent ORA-2 glasses official web page: http://www.optinvent.com/

  75. Penny C Wear glasses official web page (currently only available through Internet Archive): https://bit.ly/3kgINA4

  76. Vuzix Blade official web page. See-Through AR Smart Glasses Powered by Industry-Leading Waveguide Optics: https://www.vuzix.com/products/blade-smart-glasses

  77. Vuzix M400 official web page: https://www.vuzix.com/products/m400-smart-glasses

  78. Tractica. Smart Augmented Reality Glasses. Technical Report: https://www.tractica.com/research/smart-augmented-reality-glasses/

  79. Daqri official web page (currently only available through Internet Archive): https://bit.ly/35F5UQN

  80. ODG official web page (currently only available through Internet Archive): https://bit.ly/2GZVUHt

  81. ALVAR Augmented Reality / 3D Tracking official web page: http://virtual.vtt.fi/virtual/proj2/multimedia/alvar/index.html

  82. Apple AR Kit Augmented Reality Apple Developer official web page: https://developer.apple.com/augmented-reality/arkit/

  83. Google ARCore official web page: https://developers.google.com/ar/

  84. List of ARCore supported devices: https://developers.google.com/ar/discover/supported-devices

  85. AR-media official web page: http://www.armedia.it/index.php

  86. ARToolkitX official web page: http://www.artoolkitx.org

  87. ArUco official web page. A minimal library for Augmented Reality applications based on OpenCV: https://www.uco.es/investiga/grupos/ava/node/26

  88. Augumenta Studio official web page: http://augumenta.com

  89. Beyond Reality Face official web page: https://www.beyond-reality-face.com

  90. Image Recognition, AR and AI Solutions. Catchoom official web page: https://catchoom.com

  91. EasyAR official web page: https://www.easyar.com

  92. HP Reveal official web page: https://www.hpreveal.com

  93. Instant Reality official web page: http://www.instantreality.org

  94. MAXST official web page: http://maxst.com

  95. OpenSpace3D - Open Source Platform for 3D environments, OpenSpace3D official web page: http://www.openspace3d.com

  96. Onirix official web page: https://www.onirix.com

  97. Pikkart official web page: https://developer.pikkart.com/augmented-reality/sdk/

  98. Reality Composer/Kit official web page: https://developer.apple.com/augmented-reality/reality-composer/

  99. SSTT—Augmented Reality Tracking Library. Technotecture official web page: http://technotecture.com/projects/sstt

  100. PTC. Vuforia official web page: https://www.vuforia.com

  101. Wikitude Augmented Reality. Wikitude AR SDK official web page: https://www.wikitude.com

  102. ZapWorks official web page: https://zap.works

  103. Blender official web page: https://www.blender.org

Download references

Acknowledgements

This work was supported by the Plant Information and Augmented Reality research line of the Joint Research Unit (JRU) Navantia-UDC. The authors would also like to acknowledge the support of Miguel A. Vilar-Montesinos and O. Blanco-Novoa and the support received from the Centro de Investigación de Galicia “CITIC,” funded by Xunta de Galicia and the European Union (European Regional Development Fund-Galicia 2014–2020 Program), by grant ED431G 2019/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago M. Fernández-Caramés .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Caramés, T.M., Fraga-Lamas, P. (2023). Augmented and Mixed Reality for Shipbuilding. In: Nee, A.Y.C., Ong, S.K. (eds) Springer Handbook of Augmented Reality. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-67822-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67822-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67821-0

  • Online ISBN: 978-3-030-67822-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics