Skip to main content

Image Enhancement Using Nonlocal Prior and Gradient Residual Minimization for Improved Visualization of Deep Underwater Image

  • Chapter
  • First Online:
Computational Intelligence Methods for Super-Resolution in Image Processing Applications

Abstract

Underwater image enhancement is necessary to study aquatic flora and fauna. However, due to light absorption and scattering, acquired subaqueous images are gravely hazed and degraded. This results in low contrast of the underwater image. In literature, many algorithms aim to dehaze and enhance an image’s quality. The NLP-GRM method aims to design an efficient algorithm that carries out superior results under a different environmental condition in terms of visual analysis and objective evaluation. Our approach integrates the gradient residual minimization (GRM) and then on local prior to a new method called NLP-GRM. Initially, an underwater image is processed through a nonlocal prior to dehaze the image by color assumption. The nonlocal prior (NLP) output works with robust GRM, reinforcing the edge strength and detail in the image post removal of underwater haze. The execution of the NLP-GRM algorithm has been observed by quantitative metrics and subjectively as well. The experimental results demonstrate that the NLP-GRM is superior to existing underwater enhancement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serikawa, S., & Lu, H. (2014). Underwater image dehazing using joint trilateral filter. Computers & Electrical Engineering, 40(1), 41–50.

    Article  Google Scholar 

  2. Wang, J., Lu, K., Xue, J., He, N., & Shao, L. (2018). Single image dehazing based on the physical model and MSRCR algorithm. IEEE Transactions on Circuits and Systems for Video Technology, 28(9), 2190–2199.

    Article  Google Scholar 

  3. Goyal, B., Dogra, A., Agrawal, S., Sohi, B. S., & Sharma, A. (2020). Image denoising review: From classical to state-of-the-art approaches. Information Fusion, 55, 220–244.

    Article  Google Scholar 

  4. Dogra, A., Goyal, B., & Agrawal, S. (2017). From multi-scale decomposition to non-multi-scale decomposition methods: A comprehensive survey of image fusion techniques and its applications. IEEE Access, 5, 16040–16067.

    Article  Google Scholar 

  5. Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.

    Article  MathSciNet  Google Scholar 

  6. Deshpande, A., & Patavardhan, P. (2017). Multiframe super-resolution for long range captured Iris polar image. IET Biometrics, 6(2), 108–116.

    Article  Google Scholar 

  7. Deshpande, A., Patavardhan, P., Estrela, V. V., & Razmjooy, N. (2020). Deep learning as an alternative to super-resolution imaging in UAV systems. In V. V. Estrela, J. Hemanth, O. Saotome, G. Nikolakopoulos, & R. Sabatini (Eds.), Imaging and sensing for unmanned aircraft systems (Vol. 2, 9, pp. 177–212). London: IET. https://doi.org/10.1049/PBCE120G_ch9.

    Chapter  Google Scholar 

  8. Estrela, V. V., Hemanth, J., Loschi, H. J., Nascimento, D. A., Iano, Y., & Razmjooy, N. (2020). Computer vision and data storage in UAVs. In V. V. Estrela, J. Hemanth, O. Saotome, G. Nikolakopoulos, & R. Sabatini (Eds.), Imaging and sensing for unmanned aircraft systems (Vol. 1, 2, pp. 23–46). London: IET. https://doi.org/10.1049/PBCE120F_ch2.

    Chapter  Google Scholar 

  9. Mahapatra, D., Bozorgtabar, B., & Garnavi, R. (2019). Image super-resolution using progressive generative adversarial networks for medical image analysis. Computerized Medical Imaging and Graphics, 71, 30–39.

    Article  Google Scholar 

  10. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., & Zhang, L. (2016). Image super-resolution: The techniques, applications, and future. Signal Processing, 128, 389–408.

    Article  Google Scholar 

  11. Zhu, Q., Mai, J., & Shao, L. (2015). A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing, 24(11), 3522–3533.

    Article  MathSciNet  Google Scholar 

  12. Berman, D., & Avidan, S. (2016). Nonlocal image dehazing. In Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR) (pp. 1674–1682). Piscataway: IEEE.

    Google Scholar 

  13. Ancuti, C., Ancuti, C. O., Haber, T., & Bekaert, P. (2012). Enhancing underwater images and videos by fusion. In 2012 IEEE conference on computer vision and pattern recognition (pp. 81–88). Piscataway: IEEE.

    Chapter  Google Scholar 

  14. Yang, M., Hu, K., Du, Y., Wei, Z., Sheng, Z., & Hu, J. (2020). Underwater image enhancement based on conditional generative adversarial network. Signal Processing: Image Communication, 81, 115723.

    Google Scholar 

  15. Meng, G., Wang, Y., Duan, J., Xiang, S., & Pan, C. (2013). Efficient image dehazing with boundary constraint and contextual regularization. In Proceedings of the IEEE international conference on computer vision, pp. 617–624.

    Google Scholar 

  16. Hou, W., Gray, D. J., Weidemann, A. D., Fournier, G. R., & Forand, J. L. (2007). Automated underwater image restoration and retrieval of related optical properties. In 2007 IEEE international geoscience and remote sensing symposium (pp. 1889–1892). Piscataway: IEEE.

    Chapter  Google Scholar 

  17. Galdran, A., Alvarez-Gila, A., Bria, A., Vazquez-Corral, J., & Bertalmío, M. (2018). On the duality between retinex and image dehazing. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8212–8221.

    Google Scholar 

  18. Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., et al. (2019). An underwater image enhancement benchmark dataset and beyond. arXiv preprint arXiv:1901.05495.

    Google Scholar 

  19. Chen, C., Do, M. N., & Wang, J. (2016). Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In European conference on computer vision (pp. 576–591). Cham: Springer.

    Google Scholar 

  20. Berman, D., & Avidan, S. (2016). Nonlocal image dehazing. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1674–1682.

    Google Scholar 

  21. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., & Bischof, H. (2009). Anisotropic Huber-L1 optical flow. BMVC, 1(2), 3.

    Google Scholar 

  22. Schechner, Y. Y., & Averbuch, Y. (2007). Regularized image recovery in scattering media. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9), 1655–1660.

    Article  Google Scholar 

  23. Otair, D. (2013). Approximate k-nearest neighbour based spatial clustering using KD tree. arXiv preprint arXiv:1303.1951.

    Google Scholar 

  24. Kim, J., Kwon Lee, J., & Mu Lee, K. (2016). Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1646–1654.

    Google Scholar 

  25. Meng, G., Wang, Y., Duan, J., Xiang, S., & Pan, C. (2013). Efficient image dehazing with boundary constraint and contextual regularization. In Proceedings of the IEEE international conference on computer vision (ICCV), pp. 617–624.

    Google Scholar 

  26. Yang, M., Hu, J., Li, C., Rohde, G., Du, Y., & Hu, K. (2019). An in-depth survey of underwater image enhancement and restoration. IEEE Access, 7, 123638–123657.

    Article  Google Scholar 

  27. Anwar, S., & Li, C. (2019). Diving deeper into underwater image enhancement: A survey. arXiv preprint arXiv:1907.07863.

    Google Scholar 

  28. Treibitz, T., & Schechner, Y. Y. (2012). Turbid scene enhancement using multi-directional illumination fusion. IEEE Transactions on Image Processing, 21(11), 4662–4667.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khoond, R., Goyal, B., Dogra, A. (2021). Image Enhancement Using Nonlocal Prior and Gradient Residual Minimization for Improved Visualization of Deep Underwater Image. In: Deshpande, A., Estrela, V.V., Razmjooy, N. (eds) Computational Intelligence Methods for Super-Resolution in Image Processing Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-67921-7_14

Download citation

Publish with us

Policies and ethics