Skip to main content

The Microbiome and Urologic Cancers

In “Inflammation, Infection, and Microbiome in Cancers: Evidence, Mechanisms, and Implications”

  • Chapter
  • First Online:
Inflammation, Infection, and Microbiome in Cancers

Abstract

Cancers of the urinary system are likely to be influenced by both the urinary and gut microbiotas. While commensal organisms do not densely colonize the urinary system, those present still play a significant role in health and disease. Like other organs, there is always a potential for malignancy to occur when microorganisms cause chronic inflammation. Additionally, the urinary system is commonly exposed to the waste products in the body, including those microbial metabolites from the gut which have entered the circulation. It is, therefore, possible that the microbiota of different sites contributes to the process of carcinogenesis through metabolic toxification and detoxification as well as immune interactions. The emerging clinical evidence also suggests a prominent role for microbiota in affecting the efficacy of cancer therapeutics, including chemotherapy and immunotherapy agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasian B et al (2019) Potential role of extracellular ATP released by bacteria in bladder infection and contractility. mSphere 4:1–14

    Article  Google Scholar 

  • Abdur-Rashid K, Nair S, Chanyi R, Chin J, Burton JP (2019) Xenobiotic metabolism of abiraterone acetate and glucocorticoids by the gut microbiota. J Urol 201:2019

    Google Scholar 

  • Adebayo AS et al (2017) The microbiome in urogenital schistosomiasis and induced bladder pathologies. PLoS Negl Trop Dis 11:1–22

    Google Scholar 

  • Bayne CE, Farah D, Herbst KW, Hsieh MH (2018) Role of urinary tract infection in bladder cancer: a systematic review and meta-analysis. World J Urol 36:1181–1190

    Article  PubMed  Google Scholar 

  • Beacham BL, Deatrick JAMY (2008) Prognostic model for survival in patients with metastatic renal cell carcinoma: results from the international kidney Cancer working group. Bone 23:1–7

    Google Scholar 

  • Buc E et al (2013) High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 8

    Google Scholar 

  • Bučević Popović V et al (2018) The urinary microbiome associated with bladder cancer. Sci Rep 8:1–8

    Article  CAS  Google Scholar 

  • Burger M et al (2013) Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 63:234–241

    Article  PubMed  Google Scholar 

  • Casero RA, Stewart TM, Pegg AE (2019) Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer 18:681–695

    Article  CAS  Google Scholar 

  • Castellarin M et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JH, Holley JL (2013) Squamous cell carcinoma of the bladder in a female associated with multiple bladder stones. BMC Res Notes 6(1)

    Google Scholar 

  • Choueiri TK, Motzer RJ (2017) Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med 376:354–366

    Article  CAS  PubMed  Google Scholar 

  • Chung SD, Tsai MC, Lin CC, Lin HC (2013) A case-control study on the association between bladder cancer and prior bladder calculus. BMC Cancer 13(1)

    Google Scholar 

  • Chutipongtanate S, Sutthimethakorn S, Chiangjong W, Thongboonkerd V (2013) Bacteria can promote calcium oxalate crystal growth and aggregation. J Biol Inorg Chem 18:299–308

    Article  CAS  PubMed  Google Scholar 

  • Colldén H et al (2017) The gut microbiota is a crucial regulator of local intestinal androgen metabolism in male mice. Endocr Rev 38:1182–1192

    Google Scholar 

  • Com E et al (2003) Expression of antimicrobial Defensins in the male reproductive tract of rats, mice, and Humans1. Biol Reprod 68:95–104

    Article  CAS  PubMed  Google Scholar 

  • Corthay A (2009) How do regulatory t cells work? Scand J Immunol 70:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosseau C et al (2008) The commensal Streptococcus salivarius K12 downregulates the innate immune responses of Human epithelial cells and promotes. Infect Immun 76:4163–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Nisco NJ et al (2019) Direct detection of tissue-resident bacteria and chronic inflammation in the bladder wall of postmenopausal women with recurrent urinary tract infection. J Mol Biol 431:4368–4379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dellavalle CT et al (2013) Dietary intake of nitrate and nitrite and risk of renal cell carcinoma in the NIH-AARP diet and health study. Br J Cancer 108:205–212

    Article  CAS  PubMed  Google Scholar 

  • Deng T et al (2017) Systematic review and cumulative analysis of the combination of Mitomycin C plus Bacillus Calmette-Guérin (BCG) for non-muscle-invasive bladder Cancer. Sci Rep 7:1–10

    CAS  Google Scholar 

  • Fan ST, Edgington TS (1989) Sufficiency of the CD8+ T cell lineage to mount an effective tumoricidal response to syngeneic tumor-bearing novel class I MHC antigens. J Immunol 143:4287–4291

    Article  CAS  PubMed  Google Scholar 

  • Feldman B, Feldman D (2001) Androgen-independent prostate cancer androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    Article  CAS  PubMed  Google Scholar 

  • Fernando MH, Jayarajah U, Herath KB, de Silva MVC, Goonewardena SAS (2017) Aggressive squamous cell carcinoma of the bladder associated with a history of large bladder stone – a case report. Clin Case Rep 5:1616–1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660

    Article  PubMed  Google Scholar 

  • Gopalakrishnan V et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97–103

    Article  CAS  PubMed  Google Scholar 

  • Hahn AW et al (2018) Targeting Bacteroides in stool microbiome and response to treatment with first-line VEGF tyrosine kinase inhibitors in metastatic renal-cell carcinoma. Clin Genitourin Cancer 16:365–368

    Article  PubMed  Google Scholar 

  • Heng DYC et al (2014) Consortium prognostic model: a population-based study. Lancet Oncol 14:141–148

    Article  Google Scholar 

  • Hinotsu S et al (2011) Maintenance therapy with bacillus Calmette-Guérin Connaught strain clearly prolongs recurrence-free survival following transurethral resection of bladder tumour for non-muscle-invasive bladder cancer. BJU Int 108:187–195

    Article  PubMed  Google Scholar 

  • Ishida K, Hsieh MH (2018) Understanding urogenital schistosomiasis-related bladder cancer: an update. Front Med 5(1–7)

    Google Scholar 

  • Jacouton E et al (2019) Elucidating the immune-related mechanisms by which probiotic strain Lactobacillus casei BL23 displays anti-tumoral properties. Front Microbiol 10:1–10

    Google Scholar 

  • Kamat AM et al (2015) Expert consensus document: consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat Rev Urol 12:225–235

    Article  PubMed  Google Scholar 

  • Kamat M, Hahn N, Efstathiou AJ (2016) Bladder cancer. Lancet 288:2796–2810

    Article  Google Scholar 

  • Kates M et al (2018) Intravesical BCG induces CD4+ T-cell expansion in an immune competent model of. Bladder Cancer 5:594–603

    Google Scholar 

  • Kobayashi J (2018) Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: a review. Nitric Oxide – Biol Chem 73:66–73

    Article  CAS  Google Scholar 

  • Kostic AD et al (2014) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor immune microenvironment. Cell Host Microbe 14:207–215

    Article  CAS  Google Scholar 

  • Kurts C, Panzer U, Anders HJ, Rees AJ (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753

    Article  CAS  PubMed  Google Scholar 

  • Lalani A-KA et al (2019) Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur Urol Oncol 1:1–10

    Google Scholar 

  • Loh YH et al (2011) N-nitroso compounds and cancer incidence: the European prospective investigation into cancer and nutrition (EPIC)-Norfolk study. Am J Clin Nutr 93:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672

    Article  CAS  PubMed  Google Scholar 

  • Ma X et al (2019) The microbiome of prostate fluid is associated with prostate cancer. Front Microbiol 10:1–8

    Article  Google Scholar 

  • Magruder M et al (2019) Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun 10:1–9

    Article  CAS  Google Scholar 

  • Markowski MC et al (2019) The microbiome and genitourinary cancer: a collaborative review. Eur Urol 75:637–646

    Article  PubMed  Google Scholar 

  • McMillan A, MacKlaim JM, Burton JP, Reid G (2013) Adhesion of lactobacillus iners AB-1 to human fibronectin: a key mediator for persistence in the vagina? Reprod Sci 20:791–796

    Article  PubMed  Google Scholar 

  • Morand A, Cornu F, Dufour J-C, Tsimaratos M, Lagier J-C, Raoult D (2019) Human bacterial repertoire of the urinary tract: a potential paradigm shift. J Clin Microbiol 57:1–9

    Article  Google Scholar 

  • Mortara L et al (2018) Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol 9:2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafa MH, Sheweita SA, O’Connor PJ (1999) Relationship between schistosomiasis and bladder cancer. Clin Microbiol Rev 12:97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motzer RJ et al (2018) Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma. N Engl J Med 378:1277–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal SK et al (2015) Stool Bacteriomic profiling in patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor-tyrosine kinase inhibitors. Clin Cancer Res 21:5286–5293

    Article  CAS  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J et al (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 8:80–93

    Article  CAS  PubMed  Google Scholar 

  • Parker AS, Cerhan JR, Lynch CF, Leibovich BC, Cantor KP (2004) History of urinary tract infection and risk of renal cell carcinoma. Am J Epidemiol 159:42–48

    Article  PubMed  Google Scholar 

  • Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40:310–327

    Article  CAS  PubMed  Google Scholar 

  • Pearce MM et al (2015) The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol 213:347.e1–347.e11

    Article  Google Scholar 

  • Pederzoli F et al (2020) Sex-specific alterations in the urinary and tissue microbiome in therapy-naïve urothelial bladder cancer patients. Eur Urol Oncol 0:1–5

    Google Scholar 

  • Pichler R et al (2016) Tumor-infiltrating immune cell subpopulations influence the oncologic outcome after intravesical bacillus calmette-guérin therapy in bladder cancer. Oncotarget 7:39916–39930

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaza-d J, Ruiz-ojeda FJ, Vilchez-padial LM, Gil A (2017) Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients 9:555

    Google Scholar 

  • Porter CM, Shrestha E, Peiffer LB, Sfanos KS (2018) The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis 21:345–354

    Article  CAS  PubMed  Google Scholar 

  • Poutahidis T et al (2014) Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One 9:e84877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian Y, Wang X, Li Y, Cao Y, Chen X (2016) Extracellular ATP a new player in cancer metabolism: NSCLC cells internalize ATP in vitro and in vivo using multiple endocytic mechanisms. Metabolism 14:1087–1097

    CAS  Google Scholar 

  • Ratliff TL, Palmer JO, McGarr JA, Brown EJ (1987) Intravesical Bacillus Calmette-Guérin therapy for murine bladder tumors: initiation of the response by fibronectin-mediated attachment of Bacillus Calmette-Guérin. Cancer Res 47:1762–1766

    CAS  PubMed  Google Scholar 

  • Ridlon JM et al (2013) Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. 54:2437–2449

    Google Scholar 

  • Riquelme E et al (2019) Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178:795–806.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Round J, Mazmanian S (2014) The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:25

    Google Scholar 

  • Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97

    Article  CAS  PubMed  Google Scholar 

  • Schwaderer AL, Wolfe AJ (2017) The association between bacteria and urinary stones. Ann Transl Med 5:3–8

    Article  CAS  Google Scholar 

  • Scott RP, Quaggin SE (2015) The cell biology of renal filtration. J Cell Biol 209:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sfanos KS et al (2018) Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis 21:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha E et al (2018) Profiling the urinary microbiome in men with positive versus negative biopsies for prostate Cancer. J Urol 199:161–171

    Article  PubMed  Google Scholar 

  • Sivick KE et al (2018) Magnitude of therapeutic STING activation determines CD8 + T cell-mediated anti-tumor immunity. Cell Rep 25:3074–3085.e5

    Article  CAS  PubMed  Google Scholar 

  • Suez J et al (2018) Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174:1406–1423.e16

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S et al (2000) Mutation induction by mechanical irritation caused by uracil-induced urolithiasis in big blue® rats. Mutat Res - Fundam Mol Mech Mutagen 447:275–280

    Article  CAS  Google Scholar 

  • Tofalo R, Cocchi S, Suzzi G (2019) Polyamines and gut microbiota. Front Nutr 6:1–5

    Article  CAS  Google Scholar 

  • Tsao H, Atkins MB, Sober AJ (2004) Management of cutaneous melanoma. N Engl J Med 351:998–1012

    Article  CAS  PubMed  Google Scholar 

  • Tsoi TH et al (2016) Urinary polyamines: a pilot study on their roles as prostate cancer detection biomarkers. PLoS One 11:1–13

    Article  Google Scholar 

  • Turnbaugh PJ et al (2007) The human microbiome project. Nature 449:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vervaet BA, D’Haese PC, Verhulst A (2017) Environmental toxin-induced acute kidney injury. Clin Kidney J 10:747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2018) Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med 24:1804–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteside SA, Razvi H, Dave S, Reid G, Burton JP (2015) The microbiome of the urinary tract – a role beyond infection. Nat Rev Urol 12:81–90

    Article  PubMed  Google Scholar 

  • Woenckhaus J, Fenic I (2008) Proliferative inflammatory atrophy: a background lesion of prostate cancer? Andrologia 40:134–137

    Article  CAS  PubMed  Google Scholar 

  • Wolfe AJ et al (2012) Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol 50:1376–1383

    Article  PubMed  PubMed Central  Google Scholar 

  • Wroblewski LE, Peek RM, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W et al (2014) Mini-review: perspective of the microbiome in the pathogenesis of urothelial carcinoma. Am J Clin Exp Urol 2:57–61

    PubMed  PubMed Central  Google Scholar 

  • Yoon SH et al (2009) Selective addition of CXCR3+CCR4-CD4+ Th1 cells enhances generation of cytotoxic T cells by dendritic cells in vitro. Exp Mol Med 41:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Koenig SSK, Fu L, Ma Z, Zhou X (2013) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4:132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy P. Burton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnamoorthy, M., Maleki Vareki, S., Burton, J.P. (2021). The Microbiome and Urologic Cancers. In: Sun, J. (eds) Inflammation, Infection, and Microbiome in Cancers. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-67951-4_8

Download citation

Publish with us

Policies and ethics