Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 296 Accesses

Abstract

Our goal in this chapter is to develop electromagnetic models for the inspection of carbon-nanotube reinforced polymers (CNRPs), along the lines of our work with CFRPs. Electromagnetic models for carbon nanotube structures are of considerable current interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A ‘single-domain particle’ is a particle that is in a state of uniform magnetization at any magnetic field [80].

References

  1. N.H. Alamusi, H. Fukunaga, S. Atobe, Y. Liu, J. Li, Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 2011(11), 10691–10723 (2011)

    Article  Google Scholar 

  2. P.D. Allen, T.G. St. Pierre, W. Chua-anusorn, V. Ström, K.V. Rao, Low-frequency low-field magnetic susceptibility of ferritin and hemosiderin. Biochimica et Biophysica Acta 1500, 186–196 (2000)

    Article  Google Scholar 

  3. J.-P. Ansermet, Classical description of spin wave excitation by currents in bulk ferromagnets. IEEE Trans. Magn. 40(2), 358–360 (2004)

    Article  ADS  Google Scholar 

  4. C.P. Bean, J.D. Livingston, Superparamagnetism. J. Appl. Phys. 30(4), 120S-129S (1959)

    Article  ADS  Google Scholar 

  5. R. Casañas, H. Scharfetter, A. Altes, A. Remacha, P. Sarda, J. Sierra, J. Rosell, In-vitro measurement of iron concentration in human hepatic tissue by magnetic induction methods, in 2001 Proceedings of the 23rd Annual EMBS International Conference, October 25–28, Istanbul, Turkey (2001), pp. 2971–2974

    Google Scholar 

  6. S.B. Chaves, L.M. Lacava, Z.G.M. Lacava, O. Silva, F. Pelegrini, N. Buske, C. Gansau, P.C. Morais, R.B. Azevedo, Light microscopy and magnetic resonance characterization of a DMSA-coated magnetic fluid in mice. IEEE Trans. Magn. 38(5), 3231–3233 (2002)

    Article  ADS  Google Scholar 

  7. B. Coqblin, The Electronic Structure of Rare-Earth Metals and Alloys: The Magnetic Heavy Rare-Earths (Academic Press, London, 1977)

    Google Scholar 

  8. M.A. Cullinan, M.L. Culpepper, Carbon nanotubes as iezoresistive microelectromechanical sensors: theory and experiment. Phys. Rev. B 82, 115428 (2010)

    Article  ADS  Google Scholar 

  9. B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, 1972)

    Google Scholar 

  10. E. Dadrasnia, S. Puthukodan, H. Lamela, Terahertz electrical conductivity and optical characterization of composite nonaligned single- and multiwalled carbon nanotubes. J. Nanophoton. 8, 1–10 (2014)

    Article  Google Scholar 

  11. H. Dai, G.J. Gallo, T. Schumacher, E.T. Thostenson, A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography. J. Nondestructive Eval. 35, 26 (2016)

    Article  Google Scholar 

  12. T. Fast, A.E. Scott, H.A. Bale, B.N. Cox, Topological and euclidean metrics reveal spatically nonuniform structure in the entanglement of stochastic fiber bundles. J. Mater Sci. 50, 2370–2398 (2015)

    Article  ADS  Google Scholar 

  13. R. Grow, in Carbon Nanotubes: Properties and Applications, ed. by M. O’Connell (Taylor & Frances, New York, 2006)

    Google Scholar 

  14. R. Hergt, W. Andrä, C.G. d’Ambly, I. Hilger, W.A. Kaiser, U. Richter, H.-G. Schmidt, Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34(5), 3745–3754 (1998)

    Article  ADS  Google Scholar 

  15. A.C. Katageri, B.G. Sheeparamatti, Carbon nanotube based piezoresistive pressure sensor for wide range pressure sensing applications - a review. 4(08), 665–671 (2015). ISSN: 2278-0181

    Google Scholar 

  16. J.-W. Kim, G. Sauti, E.J. Siochi, J.G. Smith, R.A. Wincheski, R.J. Cano, J.W. Connel, K.E. Wise, Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure. Appl. Mater. Interfaces 6, 18832–18843 (2014)

    Article  Google Scholar 

  17. J.-W. Kim, G. Sauti, R.J. Cano, R.A. Wincheski, J.G. Racliffe, M. Czabaj, E.J. Siochi, Structural CNT composites part II: assessment of CNT yarns as reinforcement for comosite overwrapped pressure vessels. Paper Number 1500, (2015)

    Google Scholar 

  18. I. Maeng, C. Kang, S.J. Oh, J.-H. Son, K.H. An, Y.H. Lee, Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes. Appl. Phys. Lett. 90, 1–3 (2007)

    Google Scholar 

  19. S. Maenosono, S. Saita, Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans. Magn. 42(6), 1638–1642 (2006)

    Article  ADS  Google Scholar 

  20. C. Mathioudakis, P.C. Kelires, Modelling of three-dimensional nanographene. Nanoscale Res. Lett. 11, 151 (2016)

    Article  ADS  Google Scholar 

  21. R.D. McMichael, P. Krivosik, Classical model of extrinsic ferromagnetic resonance linewidth in ultrathin films. IEEE Trans. Magn. 40(1), 2–11 (2004)

    Article  ADS  Google Scholar 

  22. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1961)

    MATH  Google Scholar 

  23. G. Mone, E. Svoboda, Precision-Guided Tumor Killers. Popular Science (2006), p. 56

    Google Scholar 

  24. P.C. Morais, E.C.D. Lima, D. Rabelo, A.C. Reis, F. Pelegrini, Magnetic resonance of magnetite nanoparticles dispersed in mesoporous copolymer matrix. IEEE Trans. Magn. 36(5), 3038–3040 (2000)

    Article  ADS  Google Scholar 

  25. P.C. Morais, G.R.R. Gonçalves, K.S. Neto, F. Pelegrini, N. Buske, Study of particle-particle interaction in magnetic fluids using magnetic resonance. IEEE Trans. Magn. 38(5), 3225–3227 (2002)

    Article  ADS  Google Scholar 

  26. Nanoparticles beat back atherosclerosis, Science News, June 11, 2016

    Google Scholar 

  27. W. Obitayo, T. Liu, A review: carbon nanotube-based piezoresistive strain sensors. J. Sens. 2012, 652438 (2012)

    Article  Google Scholar 

  28. D.A. Papaconstantopoulos, M.J. Mehl, The Slater-Koster tight-binding method: a computationally efficient and accurate approach. J. Phys. Condens. Matter 15, R413–R440 (2003)

    Article  ADS  Google Scholar 

  29. H.A. Sabbagh, Maser spin dynamics, Goddard Space Flight Center, Greenbelt, X-523-66-448 (1966)

    Google Scholar 

  30. H.A. Sabbagh, Notes on the Spin-Hamiltonian, Goddard Space Flight, Greenbelt, X-520-66-3 (1966)

    Google Scholar 

  31. H.A. Sabbagh, Thermal noise in spin-phonon systems. IEEE Trans. Sonics Ultrasonics SU-16(3), 147–156 (1969)

    Article  Google Scholar 

  32. H.A. Sabbagh, R.K. Murphy, E.H. Sabbagh, J.C. Aldrin, J.S. Knopp, M.P. Blodgett, Stochastic-integral models for propagation-of-uncertainty problems in nondestructive evaluation, in 39th Annual Review of Progress in QNDE, Denver, Colorado, July 15–20 (2012)

    Google Scholar 

  33. E.H. Sabbagh, R.K. Murphy, H.A. Sabbagh, M. Cherry, A. Pilchak, J.C. Aldrin, C. Annis, Stochastic-integral models for characterizing random grain noise in titanium alloys, in 40th Annual Review of Progress in QNDE, Baltimore, July 21–26 (2013)

    Google Scholar 

  34. H.A. Sabbagh, R. Kim Murphy, E.H. Sabbagh, J.C. Aldrin, J.S. Knopp, Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy-Current Nondestructive Evaluation (Springer, New York, 2013)

    Book  Google Scholar 

  35. H.A. Sabbagh, R.K. Murphy, E.H. Sabbagh, J.C. Aldrin, C. Annis, J.S. Knopp, Stochastic inverse problems: models and metrics, in 41st Annual Review of Progress in QNDE, Boise, July 20–25 (2014)

    Google Scholar 

  36. V.L. Safonov, H.N. Bertram, Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain. Phys. Rev. B 61(22), R14893–R14896 (2000)

    Article  ADS  Google Scholar 

  37. R. Saito, G. Dresselhaus, M. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, London, 2005)

    MATH  Google Scholar 

  38. M.P. Sharrock, Measurement and interpretation of magnetic time effects in recording media. IEEE Trans. Magn. 35(6), 4414–4422 (1999)

    Article  ADS  Google Scholar 

  39. A.E. Siegman, Microwave Solid-State Masers (McGraw-Hill Book Company, New York, 1964)

    Book  Google Scholar 

  40. T.J. Silva, C.S. Lee, T.M. Crawford, C.T. Rogers, Inductive measurement of ultrafast magnetization dynamics in thin-film permalloy. J. App. Phys. 85(11), 7849–7862 (1999)

    Article  ADS  Google Scholar 

  41. L.B. Silveira, J.G. Santos, F. Pelegrini, C. Gansau, N. Buske, P.C. Morais, Magnetic resonance study of zero-field-frozen magnetite-based biocompatible magnetic fluid. IEEE Trans. Magn. 39(5), 2642–2647 (2003)

    Article  ADS  Google Scholar 

  42. R. Street, D.C. Crew, Fluctuation aftereffect in magnetic materials. IEEE Trans. Magn. 35(6), 4407–4413 (1999)

    Article  ADS  Google Scholar 

  43. K.J. Sun, R.A. Wincheski, C. Park, Magnetic property measurements on single wall carbon nanotube polyimide composites. J. Appl. Phys. 103(2), (2008)

    Google Scholar 

  44. L. Wan, Y. Ma, J. Guo, Damage analysis of 3D braided composite material using embedded carbon nanotube thread sensors. Mater. Eval. 74(6), 919–928 (2016)

    Google Scholar 

  45. Y. Wang, M.N. Afsar, R. Grignon, Complex permittivity and permeability of carbonyl iron powders at microwave frequencies. IEEE Antennas Propag. Soc. Int. Symp. 4, 619–622 (2003)

    Google Scholar 

  46. W.S. Weiglhofer, A. Lakhtakia, Waves and fields: from uniaxial to biaxial mediums, in between and beyond, in 8th International Conference on Electromagnetics of Complex Media, Lisbon, 27–29 September 2000. Avaiable through DTIC, ADP011588 (2000)

    Google Scholar 

  47. D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35(6), 4423–4439 (1999)

    Article  ADS  Google Scholar 

  48. R.A. Wincheski, M. Namkung, S.M. Paik, J. Smits, Carbon nanotube based magnetic tunnel junctions for electromagnetic nondestructive evaluation. Mater. Res. Soc. Symp. Proc. 721, E6.10.1–E.6.10.5 (2002)

    Google Scholar 

  49. R.A. Wincheski, M. Namkung, P. Williams, J. Smits, Four terminal carbon nanotube sensor for magnetic field measurement, in Presented at 2004 MRS Spring Meeting, April 14, San Francisco (2004)

    Google Scholar 

  50. R.A. Wincheski, J.-W. Kim, G. Sauti, E. Wainwright, P. Williams, E.J. Siochi, Nondestructive evaluation techniques for development and characterization of carbon nanotube based superstructures, in Presented at the Annual Review of Progress in Quantitative Nondestructive Evaluation (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabbagh, H.A., Kim Murphy, R., Sabbagh, E.H., Zhou, L., Wincheski, R. (2021). Carbon-Nanotube Reinforced Polymers. In: Advanced Electromagnetic Models for Materials Characterization and Nondestructive Evaluation. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-67956-9_12

Download citation

Publish with us

Policies and ethics