Skip to main content

Understanding the Role of (Advanced) Machine Learning in Metagenomic Workflows

  • Conference paper
  • First Online:
Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications (AVI-BDA 2020, ITAVIS 2020)

Abstract

With the rapid decrease in sequencing costs there is an increased research interest in metagenomics, the study of the genomic content of microbial communities. Machine learning has also seen a revolution with regards to versatility and performance in the last decade using techniques like “Deep Learning”. Classical as well as modern machine learning (ML) techniques are already used in key areas within metagenomics. There are however several challenges that may impede broader use of ML and especially deep learning.

This paper provides an overview of machine learning in metagenomics, its challenges and its relationship to biomedical pipelines. Special focus is put on modern techniques such as deep learning. The results are then discussed again in the context of the AI2VIS4BigData reference model to validate its relevancy in this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Frequently the threshold is 97% [74], although there is some debate whether this number is outdated [17].

  2. 2.

    www.mg-rast.org.

References

  1. Understanding genetics: A New York, Mid-Atlantic guide for patients and health professionals. Washington, DC (2009). ISBN 9780982162217

    Google Scholar 

  2. Afgan, E., et al.: The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46(W1), W537–W544 (2018). ISSN 0305-1048. https://doi.org/10.1093/nar/gky379. https://academic.oup.com/nar/article/46/W1/W537/5001157

  3. Andrade, B.G.N., et al.: The structure of microbial populations in nelore git reveals inter-dependency of methanogens in feces and rumen. J. Anim. Sci. Biotechnol. 11, 6 (2020). https://doi.org/10.1186/s40104-019-0422-x. ISSN 1674-9782

    Article  Google Scholar 

  4. Nazir, A.: Review on metagenomics and its applications. Imperial J. Interdisc. Res. 2(3), 277–286 (2016)

    MathSciNet  Google Scholar 

  5. Belkaid, Y., Hand, T.W.: Role of the microbiota in immunity and inflammation. Cell 157(1), 121–141 (2014). https://doi.org/10.1016/j.cell.2014.03.011. http://www.sciencedirect.com/science/article/pii/S0092867414003456

    Article  Google Scholar 

  6. Bengtsson-Palme, J.: Strategies for taxonomic and functional annotation of metagenomes. In: Nagarajan, M. (ed.) Metagenomics, pp. 55–79, Academic Press, London (2018). https://doi.org/10.1016/B978-0-08-102268-9.00003-3. ISBN 9780081022689

  7. Batut, B., et al.: ASaiM: a galaxy-based framework to analyze raw shotgun data from microbiota. bioRxiv, p. 183970 (2017). https://doi.org/10.1101/183970. https://www.biorxiv.org/content/10.1101/183970v1

  8. Yang, B., Wang, Y., Qian, P.-Y.: Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 17(1), 1–8 (2016). https://doi.org/10.1186/s12859-016-0992-y. https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-016-0992-y. ISSN 1471-2105

    Article  Google Scholar 

  9. Bolyen, E., et al.: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37(8), 852–857 (2019). https://doi.org/10.1038/s41587-019-0209-9

    Article  Google Scholar 

  10. Boža, V., Brejová, B., Vinař, T.: Deepnano: deep recurrent neural networks for base calling in minion nanopore reads. PLoS ONE 12(6), e0178751 (2017). https://doi.org/10.1371/journal.pone.0178751

    Article  Google Scholar 

  11. Buermans, H., den Dunnen, J.T.: Next generation sequencing technology: advances and applications. Biochimica et Biophysica Acta (BBA) Mol. Basis Dis. 1842(10), 1932–1941 (2014). https://doi.org/10.1016/j.bbadis.2014.06.015. http://www.sciencedirect.com/science/article/pii/S092544391400180X. ISSN 0925-4439

    Article  Google Scholar 

  12. Cacho, A., Smirnova, E., Huzurbazar, S., Cui, X.: A comparison of base-calling algorithms for illumina sequencing technology. Briefings Bioinform. 17(5), 786–795 (2016). https://doi.org/10.1093/bib/bbv088. https://academic.oup.com/bib/article/17/5/786/2262186. ISSN 1467-5463

    Article  Google Scholar 

  13. Laczny, C.C., et al.: Vizbin - an application for reference-independent visualization and human-augmented binning of metagenomic data. Microbiome 3(1), 1–7 (2015). https://doi.org/10.1186/s40168-014-0066-1. ISSN 2049-2618

    Article  Google Scholar 

  14. Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014). https://doi.org/10.1109/ACCESS.2014.2325029

    Article  Google Scholar 

  15. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15(3), 1–12 (2014). https://doi.org/10.1186/gb-2014-15-3-r46. https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2014-15-3-r46. ISSN 1474-760X

    Article  Google Scholar 

  16. Eck, S.H.: Challenges in data storage and data management in a clinical diagnostic setting. LaboratoriumsMedizin 42(6), 219–224 (2018). https://doi.org/10.1515/labmed-2018-0054. ISSN 0342-3026

    Article  Google Scholar 

  17. Edgar, R.C.: Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34(14), 2371–2375 (2018). https://doi.org/10.1093/bioinformatics/bty113

    Article  Google Scholar 

  18. Meyer, F., et al.: The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform. 9(1), 1–8 (2008). https://doi.org/10.1186/1471-2105-9-386. ISSN 1471-2105

    Article  Google Scholar 

  19. Friedman, J., Alm, E.J.: Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8(9), e1002687 (2012). https://doi.org/10.1371/journal.pcbi.1002687

    Article  Google Scholar 

  20. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press, Cambridge; London (2016). http://www.deeplearningbook.org/. ISBN 9780262035613

    MATH  Google Scholar 

  21. Arango-Argoty, G., Garner, E., Pruden, A., Heath, L.S., Vikesland, P., Zhang, L.: Deeparg: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6(1), 1–15 (2018). https://doi.org/10.1186/s40168-018-0401-z. https://microbiomejournal.biomedcentral.com/track/pdf/10.1186/s40168-018-0401-z. ISSN 2049-2618

    Article  Google Scholar 

  22. H. Zheng, H. Wang, R. Dewhurst, R. Roehe: Improving the inference of co-occurrence networks in the bovine rumen microbiome. IEEE/ACM Trans. Comput. Biol. Bioinform. 1 (2018). https://doi.org/10.1109/TCBB.2018.2879342. ISSN 1557-9964

  23. Hamon, R., Junklewitz, H., Sanchez, I.: Robustness and explainability of Artificial Intelligence: From technical to policy solutions, EUR, vol. 30040. Publications Office of the European Union, Luxembourg (2020). ISBN 9276146601

    Google Scholar 

  24. Flint, H.J., Duncan, S.H., Scott, K.P., Louis, P.: Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9(5), 1101–1111 (2007). https://doi.org/10.1111/j.1462-2920.2007.01281.x. https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1462-2920.2007.01281.x ISSN 1462-2920

    Article  Google Scholar 

  25. Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C.: Megan analysis of metagenomic data. Genome Res. 17(3), 377–386 (2007). https://doi.org/10.1101/gr.5969107. ISSN 1088-9051

    Article  Google Scholar 

  26. Wassan, J.T., Wang, H., Browne, F., Zheng, H.: A comprehensive study on predicting functional role of metagenomes using machine learning methods. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(3), 751–763 (2019). https://doi.org/10.1109/TCBB.2018.2858808. ISSN 1557-9964

    Article  Google Scholar 

  27. Jaffe, D.B., MacCallum, I., Rokhsar, D.S., Schatz, M.C.: The FASTG format specification (v1. 00) (2012). http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf

  28. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000). https://doi.org/10.1093/nar/28.1.27. https://academic.oup.com/nar/article/28/1/27/2384332 ISSN 0305-1048

    Article  Google Scholar 

  29. Hoff, K.J., Tech, M., Lingner, T., Daniel, R., Morgenstern, B., Meinicke, P.: Gene prediction in metagenomic fragments: a large scale machine learning approach. BMC Bioinform. 9(1), 1–14 (2008). https://doi.org/10.1186/1471-2105-9-217. https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-9-217 ISSN 1471-2105

    Article  Google Scholar 

  30. Field, K.G., et al.: Molecular phylogeny of the animal kingdom. Science 239(4841), 748–753 (1988). https://doi.org/10.1126/science.3277277. https://science.sciencemag.org/content/239/4841/748/tab-pdf. ISSN 1095-9203

    Article  Google Scholar 

  31. Konstantinidou, N., et al.: Metaplat: a cloud based platform for analysis and visualisation of metagenomics data. In: Bleimann, U., Humm, B., Loew, R., Stengel, I., Walsh, P. (eds.) Proceedings of the Collaborative European Research Conference (CERC 2016) Cork (2016)

    Google Scholar 

  32. Pond, S.K., et al.: Windshield splatter analysis with the galaxy metagenomic pipeline. Genome Res. 19(11), 2144–2153 (2009). https://doi.org/10.1101/gr.094508.109. ISSN 1088-9051

    Article  Google Scholar 

  33. Kothari, R.K., et al.: Comprehensive exploration of the rumen microbial ecosystem with advancements in metagenomics. In: Nagarajan, M. (ed.) Metagenomics, pp. 215–229, Academic Press, London (2018). https://doi.org/10.1016/B978-0-08-102268-9.00011-2. ISBN 9780081022689

  34. Kwiatkowski, D.P.: How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77(2), 171–192 (2005)

    Article  Google Scholar 

  35. Li, H.: GFA: graphical fragment assembly (GFA) format specification (2020). http://gfa-spec.github.io/GFA-spec/

  36. London, A.J.: Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent. Rep. 49(1), 15–21 (2019). https://doi.org/10.1002/hast.973

    Article  Google Scholar 

  37. Louis, S., Tappu, R.M., Damms-Machado, A., Huson, D.H., Bischoff, S.C.: Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS ONE 11(2), e0149564 (2016). https://doi.org/10.1371/journal.pone.0149564

    Article  Google Scholar 

  38. Mardanov, A.V., Kadnikov, V.V., Ravin, N.V.: Metagenomics: a paradigm shift in microbiology. In: Nagarajan, M. (ed.) Metagenomics, pp. 1–13, Academic Press, London (2018). https://doi.org/10.1016/B978-0-08-102268-9.00001-X. ISBN 9780081022689

  39. Markow, W., Braganza, S., Task, B.: The quant crunch: how the demand for data science skills is disrupting the job market (2017). https://www.ibm.com/downloads/cas/3RL3VXGA

  40. McDonald, D., et al.: The biological observation matrix (BIOM) format or: how i learned to stop worrying and love the ome-ome. GigaScience 1(1), 7 (2012). https://doi.org/10.1186/2047-217X-1-7

    Article  Google Scholar 

  41. Méndez-García, C., Bargiela, R., Martínez-Martínez, M., Ferrer, M.: Metagenomic protocols and strategies. In: Nagarajan, M. (ed.) Metagenomics, pp. 15–54, Academic Press, London (2018). https://doi.org/10.1016/B978-0-08-102268-9.00002-1. ISBN 9780081022689

  42. Mitchell, A.L., et al.: MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48(D1), D570–D578 (2020). https://doi.org/10.1093/nar/gkz1035. https://academic.oup.com/nar/article/48/D1/D570/5614179. ISSN 0305-1048

    Article  Google Scholar 

  43. Jain, M., Olsen, H.E., Paten, B., Akeson, M.: The oxford nanopore minion: delivery of nanopore sequencing to the genomics community. Genome Biol. 17(1), 1–11 (2016). https://doi.org/10.1186/s13059-016-1103-0. https://genomebiology.biomedcentral.com/track/pdf/10.1186/s13059-016-1103-0. ISSN 1474-760X

    Article  Google Scholar 

  44. Nagarajan, M. (ed.): Metagenomics: Perspectives, Methods, and Applications. Academic Press, London (2018). http://www.sciencedirect.com/science/book/9780081022689. ISBN 9780081022689

  45. OECD: Artificial Intelligence in Society. OECD Publishing, Paris (2019). https://doi.org/10.1787/eedfee77-en. ISBN 9789264582545

  46. Ondov, B.D., Bergman, N.H., Phillippy, A.M.: Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 385 (2011). https://doi.org/10.1186/1471-2105-12-385. ISSN 1471-2105

    Article  Google Scholar 

  47. Padovani de Souza, K., Setubal, J.C., Ponce de Leon F de Carvalho, A.C., Oliveira, G., Chateau, A., Alves, R.: Machine learning meets genome assembly. Briefings Bioinform. 20(6), 2116–2129 (2019). https://doi.org/10.1093/bib/bby072

  48. Penny, D., Hendy, M.D., Steel, M.A.: Progress with methods for constructing evolutionary trees. Trends Ecol. Evol. 7(3), 73–79 (1992). https://doi.org/10.1016/0169-5347(92)90244-6. ISSN 01695347

    Article  Google Scholar 

  49. Qin, J., et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59–65 (2010). https://doi.org/10.1038/nature08821. ISSN 0028-0836

    Article  Google Scholar 

  50. Quast, C., et al.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue), D590–D596 (2013). https://doi.org/10.1093/nar/gks1219

  51. Wallace, R.J., et al.: The rumen microbial metagenome associated with high methane production in cattle. BMC Genom. 16(1), 1–14 (2015). https://doi.org/10.1186/s12864-015-2032-0. https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-015-2032-0. ISSN 1471-2164

    Article  Google Scholar 

  52. Ramazzotti, M., Bacci, G.: 16S rRNA-based taxonomy profiling in the metagenomics era. In: Nagarajan, M. (ed.) Metagenomics, chap. 5, pp. 103–119, Academic Press, London (2018). https://doi.org/10.1016/B978-0-08-102268-9.00005-7. http://www.sciencedirect.com/science/article/pii/B9780081022689000057. ISBN 9780081022689

  53. Reis, T., Bornschlegl, M.X., Hemmje, M.L.: Towards a reference model for artificial intelligence supporting big data analysis. In: Proceedings of the 2020 International Conference on Data Science (ICDATA 2020) (2020)

    Google Scholar 

  54. Roehe, R., et al.: Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet. 12(2), e1005846 (2016). https://doi.org/10.1371/journal.pgen.1005846

    Article  Google Scholar 

  55. Eddy, S.R.: Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2(12), 919–929 (2001). https://doi.org/10.1038/35103511. https://www-nature-com.ub-proxy.fernuni-hagen.de/articles/35103511. ISSN 1471-0064

    Article  Google Scholar 

  56. Sherry, S.T., Ward, M., Sirotkin, K.: dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 9(8), 677–679 (1999). ISSN 1088-9051

    Google Scholar 

  57. Soueidan, H., Nikolski, M.: Machine learning for metagenomics: methods and tools (2015). https://arxiv.org/pdf/1510.06621

  58. Stephens, Z.D., et al.: Big data: astronomical or genomical? PLoS Biol. 13(7), e1002195 (2015). https://doi.org/10.1371/journal.pbio.1002195

    Article  Google Scholar 

  59. Stewart, R.D., Auffret, M.D., Warr, A., Walker, A.W., Roehe, R., Watson, M.: Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37(8), 953–961 (2019). https://doi.org/10.1038/s41587-019-0202-3

    Article  Google Scholar 

  60. Teng, H., Cao, M.D., Hall, M.B., Duarte, T., Wang, S., Coin, L.J.M.: Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. GigaScience 7(5) (2018). https://doi.org/10.1093/gigascience/giy037. https://academic.oup.com/gigascience/article/7/5/giy037/4966989

  61. Vallianou, N.G., Stratigou, T., Tsagarakis, S.: Microbiome and diabetes: where are we now? Diabetes Res. Clin. Pract. 146, 111–118 (2018). https://doi.org/10.1016/j.diabres.2018.10.008

    Article  Google Scholar 

  62. Vervier, K., Mahé, P., Tournoud, M., Veyrieras, J.B., Vert, J.P.: Large-scale machine learning for metagenomics sequence classification. Bioinformatics 32(7), 1023–1032 (2016). https://doi.org/10.1093/bioinformatics/btv683

    Article  Google Scholar 

  63. Vu, B., et al.: A metagenomic content and knowledge management ecosystem platform. In: Yoo, I., Bi, J., Hu, X. (eds.) 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019, San Diego, CA, USA, 18–21 November 2019. IEEE (2019). ISBN 978-1-7281-1867-3

    Google Scholar 

  64. Walsh, P., et al.: Immunoadept - bringing blood microbiome profiling to the clinical practice. In: Zheng, H. (ed.) Proceedings, 2018 IEEE International Conference on Bioinformatics and Biomedicine, Piscataway, New Jersey, pp. 1577–1581. IEEE (2018). https://doi.org/10.1109/BIBM.2018.8621354. ISBN 978-1-5386-5488-0

  65. Walsh, P., Carroll, J., Sleator, R.D.: Accelerating in silico research with workflows: a lesson in simplicity. Comput. Biol. Med. 43(12), 2028–2035 (2013). https://doi.org/10.1016/j.compbiomed.2013.09.011. ISSN 0010-4825

    Article  Google Scholar 

  66. Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R.: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16), 5261–5267 (2007). https://doi.org/10.1128/AEM.00062-07. ISSN 0099-2240

    Article  Google Scholar 

  67. Wetterstrand, K.A.: DNA sequencing costs: data from the NHGRI genome sequencing program (GSP) (2020). https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

  68. Woese, C.R., Fox, G.E.: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U.S.A. 74(11), 5088–5090 (1977). https://doi.org/10.1073/pnas.74.11.5088. ISSN 0027-8424

    Article  Google Scholar 

  69. Woese, C.R., Kandler, O., Wheelis, M.L.: Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. 87(12), 4576–4579 (1990). https://doi.org/10.1073/pnas.87.12.4576. https://www.pnas.org/content/87/12/4576. ISSN 1091-6490

    Article  Google Scholar 

  70. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539. https://www.nature.com/articles/nature14539.pdf. ISSN 1476-4687

    Article  Google Scholar 

  71. Zela, A., Klein, A., Falkner, S., Hutter, F.: Towards automated deep learning: efficient joint neural architecture and hyperparameter search (2018). http://arxiv.org/pdf/1807.06906v1

  72. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization (2016). http://arxiv.org/pdf/1611.03530v2

  73. Zhang, S.W., Jin, X.Y., Zhang, T.: Gene prediction in metagenomic fragments with deep learning. BioMed Res. Int. 2017, 4740354 (2017). https://doi.org/10.1155/2017/4740354

    Article  Google Scholar 

  74. Zhbannikov, I.Y., Foster, J.A.: Analyzing high-throughput microbial amplicon sequence data using multiple markers. In: Nagarajan, M. (ed.) Metagenomics, chap. 6, pp. 121–138. Academic Press, London (2018). https://doi.org/10.1016/B978-0-08-102268-9.00006-9. http://www.sciencedirect.com/science/article/pii/B9780081022689000069. ISBN 9780081022689

  75. Zhu, X., Vondrick, C., Fowlkes, C., Ramanan, D.: Do we need more training data? Int. J. Comput. Vis. 119(1), 76–92 (2016). https://doi.org/10.1007/s11263-015-0812-2. http://arxiv.org/pdf/1503.01508v1. ISSN 0920-5691

    Article  MathSciNet  Google Scholar 

  76. Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., Telenti, A.: A primer on deep learning in genomics. Nat. Genet. 51(1), 12–18 (2019). https://doi.org/10.1038/s41588-018-0295-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krause, T., Andrade, B.G.N., Afli, H., Wang, H., Zheng, H., Hemmje, M.L. (2021). Understanding the Role of (Advanced) Machine Learning in Metagenomic Workflows. In: Reis, T., Bornschlegl, M.X., Angelini, M., Hemmje, M.L. (eds) Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications. AVI-BDA ITAVIS 2020 2020. Lecture Notes in Computer Science(), vol 12585. Springer, Cham. https://doi.org/10.1007/978-3-030-68007-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68007-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68006-0

  • Online ISBN: 978-3-030-68007-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics