Skip to main content

Learnability and Positive Equivalence Relations

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12638))

  • 304 Accesses

Abstract

Prior work of Gavryushkin, Khoussainov, Jain and Stephan investigated what algebraic structures can be realised in worlds given by a positive (= recursively enumerable) equivalence relation which partitions the natural numbers into infinitely many equivalence classes. The present work investigates the infinite one-one numbered recursively enumerable (r.e.) families realised by such relations and asks how the choice of the equivalence relation impacts the learnability properties of these classes when studying learnability in the limit from positive examples, also known as learning from text. For all choices of such positive equivalence relations, for each of the following entries, there are one-one numbered r.e. families which satisfy it: (a) they are behaviourally correctly learnable but not vacillatorily learnable; (b) they are explanatorily learnable but not confidently learnable; (c) they are not behaviourally correctly learnable. Furthermore, there is a positive equivalence relation which enforces that (d) every vacillatorily learnable one-one numbered family of languages closed under this equivalence relation is already explanatorily learnable and cannot be confidently learnable.

D. Belanger (as RF), Z. Gao (as RF) and S. Jain (as Co-PI), F. Stephan (as PI) have been supported by the Singapore Ministry of Education Academic Research Fund grant MOE2016-T2-1-019/R146-000-234-112 and MOE2019-T2-2-121/R146-000-304-112. Furthermore, S. Jain is supported in part by NUS grant C252-000-087-001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader is referred to [19, 28] for an introduction to other basic learning notions in inductive inference and to [1,2,3,4, 6,7,8,9, 12, 14, 15, 18, 21,22,23] for further reading

  2. 2.

    However, there are many natural families of languages that are learnable in the limit, such as the class of non-erasing pattern languages (see [1, Example 1]).

References

  1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Control 45, 117–135 (1980)

    Article  MathSciNet  Google Scholar 

  2. Baliga, G., Case, J., Jain, S.: The synthesis of language learners. Inf. Comput. 152(1), 16–43 (1999)

    Article  MathSciNet  Google Scholar 

  3. B\(\bar{\rm {a}}\)rzdiņs̆, J.M.: Two theorems on the limiting synthesis of functions. In: B\(\bar{\rm {a}}\)rzdiņs̆, J.M. (ed.) Theory of Algorithms and Programs I, Proceedings of the Latvian State University, vol. 210, pp. 82–88. Latvian State University, Riga (1974). (in Russian)

    Google Scholar 

  4. B\(\bar{\rm a}\)rzdiņs̆, J.M.: Inductive inference of automata, functions and programs. In: American Mathematical Society Translations, pp. 107–122, 1977. Appeared Originally in the Proceedings of the 20-th International Congress of Mathematicians 1974, vol. 2, pp. 455–460 (1974). (in Russian)

    Google Scholar 

  5. Baur, W.: Rekursive Algebren mit Kettenbedingungen. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 20, 37–46 (1974). (in German)

    Article  MathSciNet  Google Scholar 

  6. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf. Control 28, 125–155 (1975)

    Article  MathSciNet  Google Scholar 

  7. Case, J.: The power of vacillation in language learning. SIAM J. Comput. 28(6), 1941–1969 (1999)

    Article  MathSciNet  Google Scholar 

  8. Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0012761

    Chapter  MATH  Google Scholar 

  9. Case, J., Smith, C.: Comparison of identification criteria for machine inductive inference. Theoret. Comput. Sci. 25, 193–220 (1983)

    Article  MathSciNet  Google Scholar 

  10. Ershov, Y.L.: Positive equivalences. Algebra Logic 10(6), 378–394 (1974)

    Article  Google Scholar 

  11. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)

    MATH  Google Scholar 

  12. Feldman, J.A.: Some decidability results on grammatical inference and complexity. Inf. Control 20(3), 244–262 (1972)

    Article  MathSciNet  Google Scholar 

  13. Fokina, E., Khoussainov, B., Semukhin, P., Turetsky, D.: Linear orders realized by c.e. equivalence relations. J. Symbol. Logic 81(2), 463–482 (2016)

    Article  MathSciNet  Google Scholar 

  14. Fokina, E.B., Kötzing, T., Mauro, L.S.: Limit learning equivalence structures. In: Proceedings of the 30th International Conference on Algorithmic Learning Theory (ALT 2019), pp. 383–403 (2019)

    Google Scholar 

  15. Fulk, M.: A study of inductive inference machines. Ph.D. thesis, SUNY/Buffalo (1985)

    Google Scholar 

  16. Gavruskin, A., Jain, S., Khoussainov, B., Stephan, F.: Graphs realised by r.e. equivalence relations. Ann. Pure Appl. Logic 165, 1263–1290 (2014)

    Google Scholar 

  17. Gavryushkin, A., Khoussainov, B., Stephan, F.: Reducibilities among equivalence relations induced by recursively enumerable structures. Theoret. Comput. Sci. 612, 137–152 (2016)

    Article  MathSciNet  Google Scholar 

  18. Mark Gold, E.: Language identification in the limit. Inf. Control 10, 447–474 (1967)

    Google Scholar 

  19. Jain, S., Osherson, D.N., Royer, J.S., Sharma, A.: Systems That Learn, 2nd edn. MIT Press, Cambridge (1999)

    Book  Google Scholar 

  20. Kummer, M.: An easy priority-free proof of a theorem of Friedberg. Theoret. Comput. Sci. 74, 249–251 (1990)

    Article  MathSciNet  Google Scholar 

  21. Lange, S., Zeugmann, T.: Types of monotonic language learning and their characterization. In: Haussler, D. (ed.) Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, Pittsburgh, Pennsylvania, 27–29 July 1992, pp. 377–390. ACM Press, New York (1992)

    Google Scholar 

  22. Lange, S., Zeugmann, T.: Monotonic versus non-monotonic language learning. In: Brewka, G., Jantke, K.P., Schmitt, P.H. (eds.) NIL 1991. LNCS, vol. 659, pp. 254–269. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0030397

    Chapter  MATH  Google Scholar 

  23. Mukouchi, Y.: Characterization of finite identification. In: Jantke, K.P. (ed.) AII 1992. LNCS, vol. 642, pp. 260–267. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56004-1_18

    Chapter  Google Scholar 

  24. Noether, E.: Idealtheorie in Ringbereichen. Mathematische Annalen 83, 24–66 (1921)

    Article  MathSciNet  Google Scholar 

  25. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Acad. Sci. USSR 44, 3–143 (1955)

    Google Scholar 

  26. Odifreddi, P.: Classical Recursion Theory. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  27. Odifreddi, P.: Classical Recursion Theory, vol. II. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  28. Osherson, D., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists. Bradford – The MIT Press, Cambridge (1986)

    Google Scholar 

  29. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  30. Soare, R.: Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets. Springer, Heidelberg (1987)

    Google Scholar 

  31. Trakhtenbrot, B.A., B\(\bar{\rm a}\)rzdiņs̆, J.M.: Konetschnyje awtomaty (powedenie i sinetez). Nauka, Moscow (1970). in Russian. English Translation: Finite Automata-Behavior and Synthesis, Fundamental Studies in Computer Science 1, North-Holland, Amsterdam (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyuan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belanger, D., Gao, Z., Jain, S., Li, W., Stephan, F. (2021). Learnability and Positive Equivalence Relations. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds) Language and Automata Theory and Applications. LATA 2021. Lecture Notes in Computer Science(), vol 12638. Springer, Cham. https://doi.org/10.1007/978-3-030-68195-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68195-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68194-4

  • Online ISBN: 978-3-030-68195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics