Skip to main content

Parietal and Occipital Lobes

  • Chapter
  • First Online:
The Neuropathology of Schizophrenia
  • 709 Accesses

Abstract

Due to the primarily sensory roles of the parietal and occipital lobes they have not received anywhere near the investigative focus of the more cognitive- and limbic-involved regions. The research that has been published has been mostly on structural and functional imaging with some investigation of metabolic changes. However, recent findings paint a more subtle picture, and a more detailed look at some of the imaging findings suggest consistent grey matter loss of distortions of key fasciculi, with changes in gross pathology observed towards to occipital pole. These suggest that there may be more to the involvement of these regions than has previously been supposed and that neuropathology may be usefully employed to investigate some of the structural and neuronal causes suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ide A, Dolezal C, Fernández M, Labbé E, Mandujano R, Montes S, Segura P, Verschae G, Yarmuch P, Aboitiz F. Hemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains. J Comp Neurol. 1999;410(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  2. Eidelberg D, Galaburda AM. Symmetry and asymmetry in the human posterior thalamus. I. Cytoarchitectonic analysis in normal persons. Arch Neurol. 1982;39(6):325–32.

    Article  CAS  PubMed  Google Scholar 

  3. Galaburda AM, Eidelberg D. Symmetry and asymmetry in the human posterior thalamus. II. Thalamic lesions in a case of developmental dyslexia. Arch Neurol. 1982;39(6):333–6.

    Article  CAS  PubMed  Google Scholar 

  4. Petras JM. Connections of the parietal lobe. J Psychiatr Res. 1971;8(3):189–201.

    Article  CAS  PubMed  Google Scholar 

  5. Kamali A, Sair HI, Radmanesh A, Hasan KM. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience. 2014;277:577–83.

    Article  CAS  PubMed  Google Scholar 

  6. Igelström KM, Graziano MSA. The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia. 2017;105:70–83.

    Article  PubMed  Google Scholar 

  7. Burks JD, Boettcher LB, Conner AK, Glenn CA, Bonney PA, Baker CM, Briggs RG, Pittman NA, O'Donoghue DL, Wu DH, Sughrue ME. White matter connections of the inferior parietal lobule: a study of surgical anatomy. Brain Behav. 2017;7(4):e00640.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gogtay N, Sporn A, Clasen LS, Greenstein D, Giedd JN, Lenane M, Gochman PA, Zijdenbos A, Rapoport JL. Structural brain MRI abnormalities in healthy siblings of patients with childhood-onset schizophrenia. Am J Psychiatry. 2003;160(3):569–71.

    Article  PubMed  Google Scholar 

  9. Kyriakopoulos M, Perez-Iglesias R, Woolley JB, Kanaan RA, Vyas NS, Barker GJ, Frangou S, McGuire PK. Effect of age at onset of schizophrenia on white matter abnormalities. Br J Psychiatry. 2009;195(4):346–53.

    Article  PubMed  Google Scholar 

  10. Toga AW, Thompson PM, Sowell ER. Mapping brain maturation. Trends Neurosci. 2006;29(3):148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicolson R, Rapoport JL. Childhood-onset schizophrenia: rare but worth studying. Biol Psychiatry. 1999;46(10):1418–28.

    Article  CAS  PubMed  Google Scholar 

  12. Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res. 1982;17(4):319–34.

    Article  PubMed  Google Scholar 

  13. Takahashi T, Wood SJ, Yung AR, Soulsby B, McGorry PD, Suzuki M, Kawasaki Y, Phillips LJ, Velakoulis D, Pantelis C. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Arch Gen Psychiatry. 2009;66(4):366–76.

    Article  PubMed  Google Scholar 

  14. Job DE, Whalley HC, Johnstone EC, Lawrie SM. Grey matter changes over time in high risk subjects developing schizophrenia. NeuroImage. 2005;25(4):1023–30.

    Article  PubMed  Google Scholar 

  15. Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M, Davies P, Davis KL. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry. 1997;54(6):559–66.

    Article  CAS  PubMed  Google Scholar 

  16. Pan F, Wang JY, Xu Y, Huang ML. Abnormal parietal encephalomalacia associated with schizophrenia: a case report. Medicine (Baltimore). 2017;96(10):e6310.

    Article  Google Scholar 

  17. Yildiz M, Borgwardt SJ, Berger GE. Parietal lobes in schizophrenia: do they matter? Schizophr Res Treat. 2011;2011:581686.

    Google Scholar 

  18. Takemura H, Pestilli F, Weiner KS, Keliris GA, Landi SM, Sliwa J, Ye FQ, Barnett MA, Leopold DA, Freiwald WA, Logothetis NK, Wandell BA. Occipital white matter tracts in human and macaque. Cereb Cortex. 2017;27(6):3346–59.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Caverzasi E, Papinutto N, Amirbekian B, Berger MS, Henry RG. Q-ball of inferior fronto-occipital fasciculus and beyond. PLoS One. 2014;9(6):e100274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hau J, Sarubbo S, Perchey G, Crivello F, Zago L, Mellet E, Jobard G, Joliot M, Mazoyer BM, Tzourio-Mazoyer N, Petit L. Cortical terminations of the inferior fronto-occipital and uncinate fasciculi: anatomical stem-based virtual dissection. Front Neuroanat. 2016;10:58.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martino J, Brogna C, Robles SG, Vergani F, Duffau H. Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex. 2010;46(5):691–9.

    Article  PubMed  Google Scholar 

  22. Martino J, De Witt Hamer PC, Vergani F, Brogna C, de Lucas EM, Vázquez-Barquero A, García-Porrero JA, Duffau H. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain. J Anat. 2011;219(4):531–41.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Olavarria JF, Van Sluyters RC. Overall pattern of callosal connections in visual cortex of normal and enucleated cats. J Comp Neurol. 1995;363(2):161–76.

    Article  CAS  PubMed  Google Scholar 

  24. Ardekani BA, Tabesh A, Sevy S, Robinson DG, Bilder RM, Szeszko PR. Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp. 2011;32(1):1–9.

    Article  PubMed  Google Scholar 

  25. Bilder RM, Degreef G, Pandurangi AK, Rieder RO, Sackeim HA, Mukherjee S. Neuropsychological deterioration and CT scan findings in chronic schizophrenia. Schizophr Res. 1988;1(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  26. Bilder RM, Wu H, Bogerts B, Ashtari M, Robinson D, Woerner M, Lieberman JA, Degreef G. Cerebral volume asymmetries in schizophrenia and mood disorders: a quantitative magnetic resonance imaging study. Int J Psychophysiol. 1999;34(3):197–205.

    Article  CAS  PubMed  Google Scholar 

  27. Bilder RM, Wu H, Bogerts B, Degreef G, Ashtari M, Alvir JM, Snyder PJ, Lieberman JA. Absence of regional hemispheric volume asymmetries in first-episode schizophrenia. Am J Psychiatry. 1994;151(10):1437–47.

    Article  CAS  PubMed  Google Scholar 

  28. Bogerts B, Lieberman JA, Bilder RM, Ashtari M, Degreef G, Lerner G, Johns C, Masiar S. A volumetric MRI study of limbic structures in chronic schizophrenia--relationship to psychopathology. Clin Neuropharmacol. 1992;15(Suppl 1 Pt A):112A–3A.

    Article  PubMed  Google Scholar 

  29. Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D, Bilder R. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry. 2001;49(6):487–99.

    Article  CAS  PubMed  Google Scholar 

  30. Snyder PJ, Bogerts B, Wu H, Bilder RM, Deoras KS, Lieberman JA. Absence of the adhesio interthalamica as a marker of early developmental neuropathology in schizophrenia: an MRI and postmortem histologic study. J Neuroimaging. 1998;8(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  31. Szeszko PR, Ardekani BA, Ashtari M, Kumra S, Robinson DG, Sevy S, Gunduz-Bruce H, Malhotra AK, Kane JM, Bilder RM, Lim KO. White matter abnormalities in first-episode schizophrenia or schizoaffective disorder: a diffusion tensor imaging study. Am J Psychiatry. 2005;162(3):602–5.

    Article  PubMed  Google Scholar 

  32. Szeszko PR, Narr KL, Phillips OR, McCormack J, Sevy S, Gunduz-Bruce H, Kane JM, Bilder RM, Robinson DG. Magnetic resonance imaging predictors of treatment response in first-episode schizophrenia. Schizophr Bull. 2012;38(3):569–78.

    Article  PubMed  Google Scholar 

  33. Tordesillas-Gutierrez D, Koutsouleris N, Roiz-Santiañez R, Meisenzahl E, Ayesa-Arriola R, Marco de Lucas E, Soriano-Mas C, Suarez-Pinilla P, Crespo-Facorro B. Grey matter volume differences in non-affective psychosis and the effects of age of onset on grey matter volumes: a voxelwise study. Schizophr Res. 2015;164(1–3):74–82.

    Article  PubMed  Google Scholar 

  34. Wagshal D, Knowlton BJ, Cohen JR, Bookheimer SY, Bilder RM, Fernandez VG, Asarnow RF. Cognitive correlates of gray matter abnormalities in adolescent siblings of patients with childhood-onset schizophrenia. Schizophr Res. 2015;161(2–3):345–50.

    Article  PubMed  Google Scholar 

  35. Maller JJ, Anderson RJ, Thomson RH, Daskalakis ZJ, Rosenfeld JV, Fitzgerald PB. Occipital bending in schizophrenia. Aust N Z J Psychiatry. 2017;51(1):32–41.

    Article  PubMed  Google Scholar 

  36. Glasel H, Leroy F, Dubois J, Hertz-Pannier L, Mangin JF, Dehaene-Lambertz G. A robust cerebral asymmetry in the infant brain: the rightward superior temporal sulcus. NeuroImage. 2011;58(3):716–23.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao L, Hietala J, Tohka J. Shape analysis of human brain interhemispheric fissure bending in MRI. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):216–23.

    PubMed  Google Scholar 

  38. Pepe A, Zhao L, Koikkalainen J, Hietala J, Ruotsalainen U, Tohka J. Automatic statistical shape analysis of cerebral asymmetry in 3D T1-weighted magnetic resonance images at vertex-level: application to neuroleptic-naïve schizophrenia. Magn Reson Imaging. 2013;31(5):676–87.

    Article  PubMed  Google Scholar 

  39. Onitsuka T, McCarley RW, Kuroki N, Dickey CC, Kubicki M, Demeo SS, Frumin M, Kikinis R, Jolesz FA, Shenton ME. Occipital lobe gray matter volume in male patients with chronic schizophrenia: a quantitative MRI study. Schizophr Res. 2007;92(1–3):197–206.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miyata J, Yamada M, Namiki C, Hirao K, Saze T, Fujiwara H, Shimizu M, Kawada R, Fukuyama H, Sawamoto N, Hayashi T, Murai T. Reduced white matter integrity as a neural correlate of social cognition deficits in schizophrenia. Schizophr Res. 2010;119(1–3):232–9.

    Article  PubMed  Google Scholar 

  41. Chan WY, Yang GL, Chia MY, Lau IY, Sitoh YY, Nowinski WL, Sim K. White matter abnormalities in first-episode schizophrenia: a combined structural MRI and DTI study. Schizophr Res. 2010;119(1–3):52–60.

    Article  PubMed  Google Scholar 

  42. Yao L, Lui S, Liao Y, Du MY, Hu N, Thomas JA, Gong QY. White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:100–6.

    Article  Google Scholar 

  43. Tohid H, Faizan M, Faizan U. Alterations of the occipital lobe in schizophrenia. Neurosciences (Riyadh). 2015;20(3):213–24.

    Article  Google Scholar 

  44. Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci U S A. 1996;93(24):14182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eastwood SL, Harrison PJ. Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience. 1998;86(2):437–48.

    Article  CAS  PubMed  Google Scholar 

  46. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson PM, Sower AC, Perrone-Bizzozero NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry. 1998;43(4):239–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, M. (2021). Parietal and Occipital Lobes. In: Williams, M. (eds) The Neuropathology of Schizophrenia. Springer, Cham. https://doi.org/10.1007/978-3-030-68308-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68308-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68306-1

  • Online ISBN: 978-3-030-68308-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics